Answer to Question #212899 in Differential Equations for Saad

Question #212899

solve 2xydy+(3x^2+4xy)dx=0


1
Expert's answer
2021-07-06T06:45:03-0400

Solution

New function: z=y/x, y=z*x => dydx=xdzdx+z\frac{dy}{dx}=x\frac{dz}{dx}+z

From DE: xdzdx+z=3+4z2zx\frac{dz}{dx}+z=-\frac{3+4z}{2z} => xdzdx=3+4z+2z22zx\frac{dz}{dx}=-\frac{3+4z+{2z}^2}{2z}

It is a separable differential equation

2zdz3+4z+2z2=dxx\frac{2zdz}{3+4z+{2z}^2}=-\frac{dx}{x}

2zdz3+4z+2z2=dxx\int\frac{2zdz}{3+4z+{2z}^2}=-\int\frac{dx}{x}

Left side integral is

2zdz3+4z+2z2=12(4z+4)dz3+4z+2z22dz3+4z+2z2=12d(3+4z+2z2)3+4z+2z22dz3+4z+2z2\int\frac{2zdz}{3+4z+2z^2}=\frac{1}{2}\int\frac{\left(4z+4\right)dz}{3+4z+2z^2}-2\int\frac{dz}{3+4z+2z^2}=\frac{1}{2}\int\frac{d\left(3+4z+2z^2\right)}{3+4z+2z^2}-2\int\frac{dz}{3+4z+2z^2}

Therefore

12ln3+4z+2z22dz3+4z+2z2=lnx+C\frac{1}{2}ln\left|3+4z+2z^2\right|-2\int\frac{dz}{3+4z+2z^2}=-ln\left|x\right|+C

Integral in this expression is

2dz3+4z+2z2=2dz1+(2+4z+2z2)=2dz1+2(z+1)2=2\int\frac{dz}{3+4z+2z^2}=2\int{\frac{dz}{1+\left(2+4z+2z^2\right)}=}2\int{\frac{dz}{1+2\left(z+1\right)^2}=}

22d[2(z+1)]1+[2(z+1)]2=22arctan(2(z+1))=22arctan(2z+22)\frac{2}{\sqrt2}\int{\frac{d\left[\sqrt2\left(z+1\right)\right]}{1+\left[\sqrt2\left(z+1\right)\right]^2}=\frac{2}{\sqrt2}arctan\left(\sqrt2\left(z+1\right)\right)=\frac{2}{\sqrt2}arctan\left(\frac{2z+2}{\sqrt2}\right)}

So

12ln3+4z+2z222arctan(2z+22)=lnx+C\frac{1}{2}ln\left|3+4z+2z^2\right|-\frac{2}{\sqrt2}arctan\left(\frac{2z+2}{\sqrt2}\right)=-ln\left|x\right|+C

Returning to function y(x):  

12ln3+4yx+2(yx)222arctan(2y+2xx2)=lnx+C\frac{1}{2}ln\left|3+4\frac{y}{x}+2\left(\frac{y}{x}\right)^2\right|-\frac{2}{\sqrt2}arctan\left(\frac{2y+2x}{x\sqrt2}\right)=-ln\left|x\right|+C

12ln3x2+4xy+2y222arctan(2y+2xx2)=C\frac{1}{2}ln\left|3x^2+4xy+2y^2\right|-\frac{2}{\sqrt2}arctan\left(\frac{2y+2x}{x\sqrt2}\right)=C

Answer

12ln3x2+4xy+2y222arctan(2y+2xx2)=C\frac{1}{2}ln\left|3x^2+4xy+2y^2\right|-\frac{2}{\sqrt2}arctan\left(\frac{2y+2x}{x\sqrt2}\right)=C

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment