Solution
New function: z=y/x, y=z*x => dxdy=xdxdz+z
From DE: xdxdz+z=−2z3+4z => xdxdz=−2z3+4z+2z2
It is a separable differential equation
3+4z+2z22zdz=−xdx
∫3+4z+2z22zdz=−∫xdx
Left side integral is
∫3+4z+2z22zdz=21∫3+4z+2z2(4z+4)dz−2∫3+4z+2z2dz=21∫3+4z+2z2d(3+4z+2z2)−2∫3+4z+2z2dz
Therefore
21ln∣∣3+4z+2z2∣∣−2∫3+4z+2z2dz=−ln∣x∣+C
Integral in this expression is
2∫3+4z+2z2dz=2∫1+(2+4z+2z2)dz=2∫1+2(z+1)2dz=
22∫1+[2(z+1)]2d[2(z+1)]=22arctan(2(z+1))=22arctan(22z+2)
So
21ln∣∣3+4z+2z2∣∣−22arctan(22z+2)=−ln∣x∣+C
Returning to function y(x):
21ln∣∣3+4xy+2(xy)2∣∣−22arctan(x22y+2x)=−ln∣x∣+C
21ln∣∣3x2+4xy+2y2∣∣−22arctan(x22y+2x)=C
Answer
21ln∣∣3x2+4xy+2y2∣∣−22arctan(x22y+2x)=C
Comments
Leave a comment