Solution
New function: z=y/x, y=z*x => d y d x = x d z d x + z \frac{dy}{dx}=x\frac{dz}{dx}+z d x d y = x d x d z + z
From DE: x d z d x + z = − 3 + 4 z 2 z x\frac{dz}{dx}+z=-\frac{3+4z}{2z} x d x d z + z = − 2 z 3 + 4 z => x d z d x = − 3 + 4 z + 2 z 2 2 z x\frac{dz}{dx}=-\frac{3+4z+{2z}^2}{2z} x d x d z = − 2 z 3 + 4 z + 2 z 2
It is a separable differential equation
2 z d z 3 + 4 z + 2 z 2 = − d x x \frac{2zdz}{3+4z+{2z}^2}=-\frac{dx}{x} 3 + 4 z + 2 z 2 2 z d z = − x d x
∫ 2 z d z 3 + 4 z + 2 z 2 = − ∫ d x x \int\frac{2zdz}{3+4z+{2z}^2}=-\int\frac{dx}{x} ∫ 3 + 4 z + 2 z 2 2 z d z = − ∫ x d x
Left side integral is
∫ 2 z d z 3 + 4 z + 2 z 2 = 1 2 ∫ ( 4 z + 4 ) d z 3 + 4 z + 2 z 2 − 2 ∫ d z 3 + 4 z + 2 z 2 = 1 2 ∫ d ( 3 + 4 z + 2 z 2 ) 3 + 4 z + 2 z 2 − 2 ∫ d z 3 + 4 z + 2 z 2 \int\frac{2zdz}{3+4z+2z^2}=\frac{1}{2}\int\frac{\left(4z+4\right)dz}{3+4z+2z^2}-2\int\frac{dz}{3+4z+2z^2}=\frac{1}{2}\int\frac{d\left(3+4z+2z^2\right)}{3+4z+2z^2}-2\int\frac{dz}{3+4z+2z^2} ∫ 3 + 4 z + 2 z 2 2 z d z = 2 1 ∫ 3 + 4 z + 2 z 2 ( 4 z + 4 ) d z − 2 ∫ 3 + 4 z + 2 z 2 d z = 2 1 ∫ 3 + 4 z + 2 z 2 d ( 3 + 4 z + 2 z 2 ) − 2 ∫ 3 + 4 z + 2 z 2 d z
Therefore
1 2 l n ∣ 3 + 4 z + 2 z 2 ∣ − 2 ∫ d z 3 + 4 z + 2 z 2 = − l n ∣ x ∣ + C \frac{1}{2}ln\left|3+4z+2z^2\right|-2\int\frac{dz}{3+4z+2z^2}=-ln\left|x\right|+C 2 1 l n ∣ ∣ 3 + 4 z + 2 z 2 ∣ ∣ − 2 ∫ 3 + 4 z + 2 z 2 d z = − l n ∣ x ∣ + C
Integral in this expression is
2 ∫ d z 3 + 4 z + 2 z 2 = 2 ∫ d z 1 + ( 2 + 4 z + 2 z 2 ) = 2 ∫ d z 1 + 2 ( z + 1 ) 2 = 2\int\frac{dz}{3+4z+2z^2}=2\int{\frac{dz}{1+\left(2+4z+2z^2\right)}=}2\int{\frac{dz}{1+2\left(z+1\right)^2}=} 2 ∫ 3 + 4 z + 2 z 2 d z = 2 ∫ 1 + ( 2 + 4 z + 2 z 2 ) d z = 2 ∫ 1 + 2 ( z + 1 ) 2 d z =
2 2 ∫ d [ 2 ( z + 1 ) ] 1 + [ 2 ( z + 1 ) ] 2 = 2 2 a r c t a n ( 2 ( z + 1 ) ) = 2 2 a r c t a n ( 2 z + 2 2 ) \frac{2}{\sqrt2}\int{\frac{d\left[\sqrt2\left(z+1\right)\right]}{1+\left[\sqrt2\left(z+1\right)\right]^2}=\frac{2}{\sqrt2}arctan\left(\sqrt2\left(z+1\right)\right)=\frac{2}{\sqrt2}arctan\left(\frac{2z+2}{\sqrt2}\right)} 2 2 ∫ 1 + [ 2 ( z + 1 ) ] 2 d [ 2 ( z + 1 ) ] = 2 2 a rc t an ( 2 ( z + 1 ) ) = 2 2 a rc t an ( 2 2 z + 2 )
So
1 2 l n ∣ 3 + 4 z + 2 z 2 ∣ − 2 2 a r c t a n ( 2 z + 2 2 ) = − l n ∣ x ∣ + C \frac{1}{2}ln\left|3+4z+2z^2\right|-\frac{2}{\sqrt2}arctan\left(\frac{2z+2}{\sqrt2}\right)=-ln\left|x\right|+C 2 1 l n ∣ ∣ 3 + 4 z + 2 z 2 ∣ ∣ − 2 2 a rc t an ( 2 2 z + 2 ) = − l n ∣ x ∣ + C
Returning to function y(x):
1 2 l n ∣ 3 + 4 y x + 2 ( y x ) 2 ∣ − 2 2 a r c t a n ( 2 y + 2 x x 2 ) = − l n ∣ x ∣ + C \frac{1}{2}ln\left|3+4\frac{y}{x}+2\left(\frac{y}{x}\right)^2\right|-\frac{2}{\sqrt2}arctan\left(\frac{2y+2x}{x\sqrt2}\right)=-ln\left|x\right|+C 2 1 l n ∣ ∣ 3 + 4 x y + 2 ( x y ) 2 ∣ ∣ − 2 2 a rc t an ( x 2 2 y + 2 x ) = − l n ∣ x ∣ + C
1 2 l n ∣ 3 x 2 + 4 x y + 2 y 2 ∣ − 2 2 a r c t a n ( 2 y + 2 x x 2 ) = C \frac{1}{2}ln\left|3x^2+4xy+2y^2\right|-\frac{2}{\sqrt2}arctan\left(\frac{2y+2x}{x\sqrt2}\right)=C 2 1 l n ∣ ∣ 3 x 2 + 4 x y + 2 y 2 ∣ ∣ − 2 2 a rc t an ( x 2 2 y + 2 x ) = C
Answer
1 2 l n ∣ 3 x 2 + 4 x y + 2 y 2 ∣ − 2 2 a r c t a n ( 2 y + 2 x x 2 ) = C \frac{1}{2}ln\left|3x^2+4xy+2y^2\right|-\frac{2}{\sqrt2}arctan\left(\frac{2y+2x}{x\sqrt2}\right)=C 2 1 l n ∣ ∣ 3 x 2 + 4 x y + 2 y 2 ∣ ∣ − 2 2 a rc t an ( x 2 2 y + 2 x ) = C
Comments