Question #212449

Solve the equations by the use of the operator D







D²y -6Dy +9y= e^3x + e^-3x




1
Expert's answer
2021-07-01T17:31:41-0400
(D3)2(y)=e3x+e3x(D-3)^2(y)=e^{3x} + e^{-3x}

(D3)2=e3xD2e3x(D-3)^2=e^{3x}D^2e^{-3x}

Then


e3xD2e3x(y)=e3x+e3xe^{3x}D^2e^{-3x}(y)=e^{3x} + e^{-3x}

D2e3x(y)=e3x+e3xD^2e^{-3x}(y)=e^{3x} + e^{-3x}

We have the general solution od homogeneous differential equation


yh=(A+Bx)e3xy_h=(A+Bx)e^{3x}


L(D)[ekxL(k)]=ekxL(D)\bigg[\dfrac{e^{kx}}{L(k)}\bigg]=e^{kx}

L(D)=D26D+9L(D)=D^2-6D+9

Since


L(3)=(3)26(3)+9=0L(3)=(3)^2-6(3)+9=0

we use


y1=11(12!x2)e3x=12x2e3xy_1=\dfrac{1}{1}(\dfrac{1}{2!}x^2)e^{3x}=\dfrac{1}{2}x^2e^3x


y2=e3xL(3)y_2=\dfrac{e^{-3x}}{L(-3)}

L(3)=(3)26(3)+9=36L(-3)=(-3)^2-6(-3)+9=36

The particular solution is


yp=12x2e3x+136e3xy_p=\dfrac{1}{2}x^2e^{3x}+\dfrac{1}{36}e^{-3x}

The genral solution of nonhomogeneous differential equation is


y=(A+Bx)e3x+12x2e3x+136e3xy=(A+Bx)e^{3x}+\dfrac{1}{2}x^2e^{3x}+\dfrac{1}{36}e^{-3x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS