(D−3)2(y)=e3x+e−3x
(D−3)2=e3xD2e−3x Then
e3xD2e−3x(y)=e3x+e−3x
D2e−3x(y)=e3x+e−3x We have the general solution od homogeneous differential equation
yh=(A+Bx)e3x
L(D)[L(k)ekx]=ekx
L(D)=D2−6D+9Since
L(3)=(3)2−6(3)+9=0 we use
y1=11(2!1x2)e3x=21x2e3x
y2=L(−3)e−3x
L(−3)=(−3)2−6(−3)+9=36The particular solution is
yp=21x2e3x+361e−3x The genral solution of nonhomogeneous differential equation is
y=(A+Bx)e3x+21x2e3x+361e−3x
Comments