(1) Given equation is
(3x2+9xy+5y2)dx−(6x2+4xy)dy=0
(3x2+9xy+5y2)dx=(6x2+4xy)dy
dxdy=(6x2+4xy)(3x2+9xy+5y2)
Putting y=vx, then dxdy=v+xdxdv
Then equation will be,
v+xdxdv=(6x2+4vx2)(3x2+9vx2+5v2x2)
v+xdxdv=(6+4v)(3+9v+5v2)
xdxdv=(6+4v)(3+9v+5v2)−v
xdxdv=(6+4v)(3+3v+v2)
(3+3v+v2)(6+4v)dv=xdx
Integrating both sides,
Integrating left hand side first,
∫(3+3v+v2)(6+4v)dv
Let v2+3v+3=t
(2v+3)dv=dt
Then integral will be,
∫(3+3v+v2)(6+4v)dv=∫t2dt=2ln∣t∣=2ln∣3+3v+v2∣
Then, 2ln∣3+3v+v2∣=ln∣x∣+ln∣C∣
(3+3v+v2)2=Cx
Putting v=y/x,
(3+3(xy)+(xy)2)2=Cx
(3x2+3xy+y2)2=Cx5 is the solution of the equation.
(2) Given equation is, x2dxdy+xy=xy3
Then, dxdy+xy=x3y3
Putting y=vx, we will get,
v+xdxdy+v=v3
xdxdv=v3−2v
v3−2vdv=xdx
Integrating both sides,
Integrating left-hand side first, ∫v3−2vdv
∫v3−2vdv=∫v(v2−2)dv
Doing partial fraction,
v(v2−2)1=vA+v2−2Bv+C
Solving For A, B and C, we get
v(v2−2)1=v(v2−2)A(v2−2)+Bv2+Cv=v(v2−2)(A+B)v2+Cv−2A
Comparing powers on both sides, we get
A+B=0, C=0 and -2A=1
⟹A=−21,B=21,C=0
Then,
v(v2−2)1=2v−1+2(v2−2)v
Now integrating it,
∫v(v2−2)1dv=∫2v−1+2(v2−2)vdv
∫2(v2−2)vdv=∫4(v2−2)2vdv
Taking v2−2=t⟹2vdv=dt
∫4(v2−2)2vdv=∫4tdt=41ln∣t∣=41ln∣v2−2∣
So, integral of LHS will be,
∫v(v2−2)1dv=∫2v−1+2(v2−2)vdv=−21ln∣v∣+41ln∣v2−2∣
So, we get,
−21ln∣v∣+41ln∣v2−2∣=ln∣x∣+ln∣C∣
−42ln∣v∣+41ln∣v2−2∣=ln∣x∣+ln∣C∣
41ln∣v2v2−2∣=ln∣x∣+ln∣C∣
v2v2−2=Kx4 where K is also some constant.
putting v=xy
y2y2−2x2=Kx4 which is the required solution.
Comments