Question #212951

find the general solutions for each of the following

  1. (3x2+9xy+5y2)dx-(6x2+4xy)dy =0 y(2)=-6
  2. x2dy/dx +xy=y3/x
1
Expert's answer
2021-07-06T15:42:27-0400

(1) Given equation is

(3x2+9xy+5y2)dx(6x2+4xy)dy=0(3x^2+9xy+5y^2)dx-(6x^2+4xy)dy =0


(3x2+9xy+5y2)dx=(6x2+4xy)dy(3x^2+9xy+5y^2)dx=(6x^2+4xy)dy


dydx=(3x2+9xy+5y2)(6x2+4xy)\frac{dy}{dx}=\frac{(3x^2+9xy+5y^2)}{(6x^2+4xy)}


Putting y=vx, then dydx=v+xdvdx\frac{dy}{dx}=v+x\frac{dv}{dx}


Then equation will be,

v+xdvdx=(3x2+9vx2+5v2x2)(6x2+4vx2)v+x\frac{dv}{dx}=\frac{(3x^2+9vx^2+5v^2x^2)}{(6x^2+4vx^2)}


v+xdvdx=(3+9v+5v2)(6+4v)v+x\frac{dv}{dx}=\frac{(3+9v+5v^2)}{(6+4v)}


xdvdx=(3+9v+5v2)(6+4v)vx\frac{dv}{dx}=\frac{(3+9v+5v^2)}{(6+4v)}-v


xdvdx=(3+3v+v2)(6+4v)x\frac{dv}{dx}=\frac{(3+3v+v^2)}{(6+4v)}


(6+4v)dv(3+3v+v2)=dxx\frac{(6+4v)dv}{(3+3v+v^2)}=\frac{dx}{x}


Integrating both sides,


Integrating left hand side first,

(6+4v)dv(3+3v+v2)\int \frac{(6+4v)dv}{(3+3v+v^2)}


Let v2+3v+3=tv^2+3v+3 = t

(2v+3)dv=dt(2v+3)dv = dt

Then integral will be,


(6+4v)dv(3+3v+v2)=2dtt=2lnt=2ln3+3v+v2\int \frac{(6+4v)dv}{(3+3v+v^2)} = \int \frac{2 dt}{t} = 2ln|t| = 2ln|3+3v+v^2|



Then, 2ln3+3v+v2=lnx+lnC2ln|3+3v+v^2| = ln|x| + ln|C|


(3+3v+v2)2=Cx(3+3v+v^2)^2 = Cx

Putting v=y/x,


(3+3(yx)+(yx)2)2=Cx(3+3(\frac{y}{x})+(\frac{y}{x})^2)^2 = Cx


(3x2+3xy+y2)2=Cx5(3x^2+3xy+y^2)^2 = Cx^5 is the solution of the equation.






(2) Given equation is, x2dydx+xy=y3xx^2\frac{dy}{dx} +xy=\frac{y^3}{x}


Then, dydx+yx=y3x3\frac{dy}{dx} +\frac{y}{x}=\frac{y^3}{x^3}


Putting y=vx, we will get,


v+xdydx+v=v3v+x\frac{dy}{dx}+v = v^3


xdvdx=v32vx\frac{dv}{dx} = v^3-2v


dvv32v=dxx\frac{dv}{ v^3-2v} =\frac{dx}{x}


Integrating both sides,

Integrating left-hand side first, dvv32v\int\frac{dv}{ v^3-2v}


dvv32v=dvv(v22)\int\frac{dv}{ v^3-2v} = \int\frac{dv}{ v(v^2-2)}

Doing partial fraction,

1v(v22)=Av+Bv+Cv22\frac{1}{ v(v^2-2)} = \frac{A}{v}+\frac{Bv+C}{v^2-2}

Solving For A, B and C, we get

1v(v22)=A(v22)+Bv2+Cvv(v22)=(A+B)v2+Cv2Av(v22)\frac{1}{ v(v^2-2)} = \frac{A(v^2-2)+Bv^2+Cv}{v(v^2-2)} = \frac{(A+B)v^2+Cv-2A}{v(v^2-2)}


Comparing powers on both sides, we get

A+B=0, C=0 and -2A=1

    A=12,B=12,C=0\implies A = -\frac{1}{2} , B = \frac{1}{2} , C=0

Then,

1v(v22)=12v+v2(v22)\frac{1}{ v(v^2-2)} = \frac{-1}{2v}+\frac{v}{2(v^2-2)}

Now integrating it,


1v(v22)dv=12v+v2(v22)dv\int\frac{1}{ v(v^2-2)} dv=\int \frac{-1}{2v}+\frac{v}{2(v^2-2)} dv


v2(v22)dv=2v4(v22)dv\int \frac{v}{2(v^2-2)} dv =\int \frac{2v}{4(v^2-2)} dv

Taking v22=t    2vdv=dtv^2-2 =t \implies 2vdv = dt


2v4(v22)dv=dt4t=14lnt=14lnv22\int \frac{2v}{4(v^2-2)} dv = \int \frac{dt}{4t} = \frac{1}{4}ln|t|= \frac{1}{4}ln|v^2-2|


So, integral of LHS will be,

1v(v22)dv=12v+v2(v22)dv=12lnv+14lnv22\int\frac{1}{ v(v^2-2)} dv=\int \frac{-1}{2v}+\frac{v}{2(v^2-2)} dv = -\frac{1}{2}ln|v|+\frac{1}{4}ln|v^2-2|


So, we get,


12lnv+14lnv22=lnx+lnC-\frac{1}{2}ln|v|+\frac{1}{4}ln|v^2-2| = ln|x|+ln|C|


24lnv+14lnv22=lnx+lnC-\frac{2}{4}ln|v|+\frac{1}{4}ln|v^2-2| = ln|x|+ln|C|


14lnv22v2=lnx+lnC\frac{1}{4}ln|\frac{v^2-2}{v^2}| = ln|x| + ln|C|


v22v2=Kx4\frac{v^2-2}{v^2} = Kx^4 where K is also some constant.


putting v=yxv = \frac{y}{x}


y22x2y2=Kx4\frac{y^2-2x^2}{y^2} = Kx^4 which is the required solution.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS