Answer to Question #210426 in Differential Equations for Bilal Ur Rehman

Question #210426

In the following one solution of a second y1 order linear homogene DE is given. Find the second linearly independent solution y2 using the method of reduction of order.




2x²y" + 3xy'-y=0 ,. y1=(1/x)

(1-x2)y"-2xy'+2y=0 , y1=x

x2y"+2xy'-2y=0,. y1=x

x2y"+3xy'+y=0, y1=1/x

x2y"-x(x+2)y'=0,. y1=x


1
Expert's answer
2021-06-28T04:00:37-0400

1.


2x2y+3xyy=0,y1=(1/x)2x^2y'' + 3xy'-y=0 ,y_1=(1/x)

y(x)=u(x)y1(x)y(x)=u(x)y_1(x)

y(x)=u(x)x1y(x)=u(x)x^{-1}

y=ux1ux2y'=u'x^{-1}-ux^{-2}

y=ux12ux2+2ux3y''=u''x^{-1}-2u'x^{-2}+2ux^{-3}


2x2(ux12ux2+2ux3)+3x(ux1ux2)2x^2(u''x^{-1}-2u'x^{-2}+2ux^{-3})+3x(u'x^{-1}-ux^{-2})

ux1=0-ux^{-1}=0

2xu4u+4ux1+3u3ux1ux1=02xu''-4u'+4ux^{-1}+3u'-3ux^{-1}-ux^{-1}=0

2xuu=02xu''-u'=0

u=w,u=wu'=w, u''=w'

2xww=02xw'-w=0

dww=dx2x\dfrac{dw}{w}=\dfrac{dx}{2x}

dww=dx2x\int\dfrac{dw}{w}=\int\dfrac{dx}{2x}

lnw=12lnx+lnC1\ln|w|=\dfrac{1}{2}\ln|x|+\ln C_1

w=C1xw=C_1\sqrt{x}

u=C1xu'=C_1\sqrt{x}

du=C1xdx\int du=\int C_1\sqrt{x}dx

u=C2x3/2+C3u=C_2x^{3/2}+C_3

y(x)=u(x)x1y(x)=u(x)x^{-1}

y(x)=C2x1/2+C3x1y(x)=C_2x^{1/2}+C_3x^{-1}

2.


(1x2)y2xy+2y=0,y1=x(1-x^2)y''-2xy'+2y=0 , y_1=x

y(x)=u(x)y1(x)y(x)=u(x)y_1(x)

y(x)=u(x)xy(x)=u(x)x

y=ux+uy'=u'x+u

y=ux+2uy''=u''x+2u'


(1x2)(ux+2u)2x(ux+u)+2ux=0(1-x^2)(u''x+2u')-2x(u'x+u)+2ux=0

x(1x2)u+2u2x2u2x2u2ux+2ux=0x(1-x^2)u''+2u'-2x^2u'-2x^2u'-2ux+2ux=0

x(1x2)u+(24x2)u=0x(1-x^2)u''+(2-4x^2)u'=0

u=w,u=wu'=w, u''=w'

x(1x2)w+(24x2)w=0x(1-x^2)w'+(2-4x^2)w=0

dww=24x2x(1x2)dx\dfrac{dw}{w}=\dfrac{2-4x^2}{x(1-x^2)}dx

dww=24x2x(1x2)dx\int\dfrac{dw}{w}=\int\dfrac{2-4x^2}{x(1-x^2)}dx

24x2x(1x2)dx=Axdx+B1xdx+C1+xdx\dfrac{2-4x^2}{x(1-x^2)}dx=\dfrac{A}{x}dx+\dfrac{B}{1-x}dx+\dfrac{C}{1+x}dx

A(1x2)+Bx(1+x)+Cx(1x)=24x2A(1-x^2)+Bx(1+x)+Cx(1-x)=2-4x^2

AAx2+Bx+Bx2+CxCx2=24x2A-Ax^2+Bx+Bx^2+Cx-Cx^2=2-4x^2

A=2A=2

B+C=0B+C=0

A+BC=4-A+B-C=-4

A=2,B=1,C=1A=2, B=-1, C=1

dww=2xdx11xdx+11+xdx\int\dfrac{dw}{w}=\int\dfrac{2}{x}dx-\int\dfrac{1}{1-x}dx+\int\dfrac{1}{1+x}dx

lnw=2lnx+ln1x+ln1+x+lnC1\ln|w|=2\ln|x|+\ln|1-x|+\ln|1+x|+\ln C_1

w=C1x2(1x2)w=C_1x^2(1-x^2)

u=C1x2(1x2)u'=C_1x^2(1-x^2)

u=13C1x315C1x5+C2u=\dfrac{1}{3}C_1x^3-\dfrac{1}{5}C_1x^5+C_2

y=13C1x415C1x6+C2xy=\dfrac{1}{3}C_1x^4-\dfrac{1}{5}C_1x^6+C_2x



3.


x2y+2xy2y=0,y1=xx^2y''+2xy-2y=0 , y_1=x

y(x)=u(x)y1(x)y(x)=u(x)y_1(x)

y(x)=u(x)xy(x)=u(x)x

y=ux+uy'=u'x+u

y=ux+2uy''=u''x+2u'




x2(ux+2u)+2x(ux+u)2ux=0x^2(u''x+2u')+2x(u'x+u)-2ux=0

x3u+2x2u+2ux2ux=0x^3u''+2x^2u'+2ux-2ux=0

x3u+2x2u=0x^3u''+2x^2u'=0

u=w,u=wu'=w, u''=w'

x3w+2x2w=0x^3w'+2x^2w=0

If x0x\not=0

dww=2xdx\dfrac{dw}{w}=-\dfrac{2}{x}dx

dww=2xdx\int\dfrac{dw}{w}=-\int\dfrac{2}{x}dx

lnw=2lnx+lnC1\ln|w|=-2\ln|x|+\ln C_1

w=C1x2w=\dfrac{C_1}{x^2}

u=C1x2u'=\dfrac{C_1}{x^2}

u=C1x+C2u=-\dfrac{C_1}{x}+C_2

y=C3+C2xy=C_3+C_2x



4.


x2y+3xy+y=0,y1=(1/x)x^2y'' + 3xy'+y=0 ,y_1=(1/x)

y(x)=u(x)y1(x)y(x)=u(x)y_1(x)

y(x)=u(x)x1y(x)=u(x)x^{-1}

y=ux1ux2y'=u'x^{-1}-ux^{-2}

y=ux12ux2+2ux3y''=u''x^{-1}-2u'x^{-2}+2ux^{-3}


x2(ux12ux2+2ux3)+3x(ux1ux2)x^2(u''x^{-1}-2u'x^{-2}+2ux^{-3})+3x(u'x^{-1}-ux^{-2})

+ux1=0+ux^{-1}=0

xu2u+2ux1+3u3ux1+ux1=0xu''-2u'+2ux^{-1}+3u'-3ux^{-1}+ux^{-1}=0

xu+u=0xu''+u'=0

u=w,u=wu'=w, u''=w'

xw+w=0xw'+w=0

dww=dxx\dfrac{dw}{w}=-\dfrac{dx}{x}

dww=dxx\int\dfrac{dw}{w}=-\int\dfrac{dx}{x}

lnw=lnx+lnC1\ln|w|=-\ln|x|+\ln C_1

w=C1xw=\dfrac{C_1}{x}

u=C1xu'=\dfrac{C_1}{x}

du=C1xdx\int du=\int \dfrac{C_1}{x}dx

u=C1lnx+C2u=C_1\ln|x|+C_2

y(x)=u(x)x1y(x)=u(x)x^{-1}

y(x)=C1lnxx+C2xy(x)=\dfrac{C_1\ln x}{x}+\dfrac{C_2}{x}

5.


x2yx(x+2)y=0,y1=xx^2y''-x(x+2)y'=0 , y_1=x

If x0x\not=0


xy(x+2)y=0xy''-(x+2)y'=0

y=w,y=wy'=w, y''=w'

xw(x+2)w=0xw'-(x+2)w=0

If x0x\not=0

dww=x+2xdx\dfrac{dw}{w}=\dfrac{x+2}{x}dx

dww=x+2xdx\int\dfrac{dw}{w}=\int\dfrac{x+2}{x}dx

lnw=x+lnx2+lnC1\ln |w|=x+\ln x^2+\ln C_1

y=C1x2exy'=C_1x^2e^x

y=C1x2exdxy=\int C_1x^2e^xdxC1x2exdx=C1x2ex2C1xexdx\int C_1x^2e^xdx=C_1x^2e^x-2C_1\int xe^xdx

=C1x2ex2C1xex+2C1exdx=C_1x^2e^x-2C_1xe^x+2C_1\int e^xdx

=C1x2ex2C1xex+2C1ex+C2=C_1x^2e^x-2C_1xe^x+2C_1e^x+C_2

y=C1x2ex2C1xex+2C1ex+C2y=C_1x^2e^x-2C_1xe^x+2C_1e^x+C_2




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Bilal Ur Rehman
28.06.21, 11:29

Thank you Sir NICE Experience

Leave a comment