Question #210354

xdy + (y-x^2y^2)dx = 0


1
Expert's answer
2021-07-16T03:27:27-0400
y+1xy=xy2y'+\dfrac{1}{x}y=xy^2

First order Bernoulli ODE


t=y1n=y12=y1t=y^{1-n}=y^{1-2}=y^{-1}

y=t1,y=t2ty=t^{-1}, y'=-t^{-2}t'

t2t+1xt1=xt2-t^{-2}t'+\dfrac{1}{x}t^{-1}=xt^{-2}

t+1xt=x-t'+\dfrac{1}{x}t=x

μ=1x\mu=\dfrac{1}{x}

1xt+1x2t=1-\dfrac{1}{x}t'+\dfrac{1}{x^2}t=1

(1xt)=1xt1x2(\dfrac{1}{x}t)'=\dfrac{1}{x}t'-\dfrac{1}{x^2}

(1xt)=1(\dfrac{1}{x}t)'=-1

1xt=x+c1\dfrac{1}{x}t=-x+c_1

t=x2+c1xt=-x^2+c_1x

y=1x2+c1xy=\dfrac{1}{-x^2+c_1x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS