Question #210425

In the following one solution of a second y1 order linear homogene DE is given. Find the second linearly independent solution y2 using the method of reduction of order.


  1. 2x²y" + 3xy'-y=0 ,.
  2. (1-x2)y"-2xy'+2y=0 ,
  3. x2y"+2xy'-2y=0,
  4. x2y"+3xy'+y=0,
  5. x2y"-x(x+2)y'=0,
1
Expert's answer
2021-07-13T05:14:42-0400

1.

Euler Equation.

y=xmy=x^m


Then:

x2m(m1)xm2+3/2xmxm1xm/2=0x^2m(m-1)x^{m-2}+3/2xmx^{m-1}-x^m/2=0


Characteristic Equation:

m(m1)+32m+12=0m(m-1)+\frac{3}{2}m+\frac{1}{2}=0

or

m2+12m+12=0m^2+\frac{1}{2}m+\frac{1}{2}=0


m1,2=1±i34m_{1,2}=\frac{-1\pm i\sqrt{3}}{4}


Thus, the general solution is

y=x1/4[c1cos(3lnx/4)+c2sin(3lnx/4)]y=x^{-1/4}[c_1cos(\sqrt{3}ln|x|/4)+c_2sin(\sqrt{3}ln|x|/4)]


2.

(1+x2)y2xy+2y=0(1+x^2)y''-2xy'+2y=0


y1=xy_1=x


y2xy/(1+x2)+2y/(1+x2)=0y''-2xy'/(1+x^2)+2y/(1+x^2)=0


y2=ep(x)dxy12dxy_2=\int\frac{e^{-\int p(x)dx}}{y^2_1}dx


where p(x)=-2x/(1+x2)


Then:


2x1+x2dx=ln1+x2\int \frac{2x}{1+x^2}dx=ln|1+x^2|


y2=dxx2(1+x2)=1/x+arctanxy_2=\int \frac{dx}{x^2(1+x^2)}=-1/x+arctanx


1x2(1+x2)=Ax+Bx2+Cx+D1+x2\frac{1}{x^2(1+x^2)}=\frac{A}{x}+\frac{B}{x^2}+\frac{Cx+D}{1+x^2}


Ax(1+x2)+B(1+x2)+Cx3+Dx2=1Ax(1+x^2)+B(1+x^2)+Cx^3+Dx^2=1


A+C=0A+C=0

B+D=0B+D=0

A=0,B=1,D=1,C=0A=0,B=1,D=-1,C=0


3.

x2y"+2xy'-2y=0

y=xmy=x^m

The characteristic equation:

m(m1)+2m2=0m(m-1)+2m-2=0


m1=1+32=1,m2=2m_{1}=\frac{-1+ 3}{2}=1,m_2=-2


The general solution is

y=c1x+c2x2y=c_1x+c_2x^{-2}


4.

x2y"+3xy'+y=0

y=xmy=x^m

The characteristic equation:

m(m1)+3m+1=0m(m-1)+3m+1=0


m1,2=22=1m_{1,2}=\frac{-2}{2}=-1


y1=x1,y2=x1lnxy_1=x^{-1},y_2=x^{-1}ln|x|


5.

x2y"-x(x+2)y'=0

y=z,y=dz/dxy'=z,y''=dz/dx

Then:

x2zx(x+2)z=0x^2z'-x(x+2)z=0


dzz=x(x+2)x2dx\frac{dz}{z}=\frac{x(x+2)}{x^2}dx


lnz=x+2lnx+c1ln|z|=x+2ln|x|+c_1


z=x2ec1xz=x^2e^{c_1x}


y=x2ec1xdx=ec1x(c12x22c1x+2)c13+c2y=\intop x^2e^{c_1x}dx=\frac{e^{c_1x}(c_1^2x^2-2c_1x+2)}{c_1^3}+c_2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS