1.
Euler Equation.
y = x m y=x^m y = x m
Then:
x 2 m ( m − 1 ) x m − 2 + 3 / 2 x m x m − 1 − x m / 2 = 0 x^2m(m-1)x^{m-2}+3/2xmx^{m-1}-x^m/2=0 x 2 m ( m − 1 ) x m − 2 + 3/2 x m x m − 1 − x m /2 = 0
Characteristic Equation:
m ( m − 1 ) + 3 2 m + 1 2 = 0 m(m-1)+\frac{3}{2}m+\frac{1}{2}=0 m ( m − 1 ) + 2 3 m + 2 1 = 0
or
m 2 + 1 2 m + 1 2 = 0 m^2+\frac{1}{2}m+\frac{1}{2}=0 m 2 + 2 1 m + 2 1 = 0
m 1 , 2 = − 1 ± i 3 4 m_{1,2}=\frac{-1\pm i\sqrt{3}}{4} m 1 , 2 = 4 − 1 ± i 3
Thus, the general solution is
y = x − 1 / 4 [ c 1 c o s ( 3 l n ∣ x ∣ / 4 ) + c 2 s i n ( 3 l n ∣ x ∣ / 4 ) ] y=x^{-1/4}[c_1cos(\sqrt{3}ln|x|/4)+c_2sin(\sqrt{3}ln|x|/4)] y = x − 1/4 [ c 1 cos ( 3 l n ∣ x ∣/4 ) + c 2 s in ( 3 l n ∣ x ∣/4 )]
2.
( 1 + x 2 ) y ′ ′ − 2 x y ′ + 2 y = 0 (1+x^2)y''-2xy'+2y=0 ( 1 + x 2 ) y ′′ − 2 x y ′ + 2 y = 0
y 1 = x y_1=x y 1 = x
y ′ ′ − 2 x y ′ / ( 1 + x 2 ) + 2 y / ( 1 + x 2 ) = 0 y''-2xy'/(1+x^2)+2y/(1+x^2)=0 y ′′ − 2 x y ′ / ( 1 + x 2 ) + 2 y / ( 1 + x 2 ) = 0
y 2 = ∫ e − ∫ p ( x ) d x y 1 2 d x y_2=\int\frac{e^{-\int p(x)dx}}{y^2_1}dx y 2 = ∫ y 1 2 e − ∫ p ( x ) d x d x
where p(x)=-2x/(1+x2 )
Then:
∫ 2 x 1 + x 2 d x = l n ∣ 1 + x 2 ∣ \int \frac{2x}{1+x^2}dx=ln|1+x^2| ∫ 1 + x 2 2 x d x = l n ∣1 + x 2 ∣
y 2 = ∫ d x x 2 ( 1 + x 2 ) = − 1 / x + a r c t a n x y_2=\int \frac{dx}{x^2(1+x^2)}=-1/x+arctanx y 2 = ∫ x 2 ( 1 + x 2 ) d x = − 1/ x + a rc t an x
1 x 2 ( 1 + x 2 ) = A x + B x 2 + C x + D 1 + x 2 \frac{1}{x^2(1+x^2)}=\frac{A}{x}+\frac{B}{x^2}+\frac{Cx+D}{1+x^2} x 2 ( 1 + x 2 ) 1 = x A + x 2 B + 1 + x 2 C x + D
A x ( 1 + x 2 ) + B ( 1 + x 2 ) + C x 3 + D x 2 = 1 Ax(1+x^2)+B(1+x^2)+Cx^3+Dx^2=1 A x ( 1 + x 2 ) + B ( 1 + x 2 ) + C x 3 + D x 2 = 1
A + C = 0 A+C=0 A + C = 0
B + D = 0 B+D=0 B + D = 0
A = 0 , B = 1 , D = − 1 , C = 0 A=0,B=1,D=-1,C=0 A = 0 , B = 1 , D = − 1 , C = 0
3.
x2 y"+2xy'-2y=0
y = x m y=x^m y = x m
The characteristic equation:
m ( m − 1 ) + 2 m − 2 = 0 m(m-1)+2m-2=0 m ( m − 1 ) + 2 m − 2 = 0
m 1 = − 1 + 3 2 = 1 , m 2 = − 2 m_{1}=\frac{-1+ 3}{2}=1,m_2=-2 m 1 = 2 − 1 + 3 = 1 , m 2 = − 2
The general solution is
y = c 1 x + c 2 x − 2 y=c_1x+c_2x^{-2} y = c 1 x + c 2 x − 2
4.
x2 y"+3xy'+y=0
y = x m y=x^m y = x m
The characteristic equation:
m ( m − 1 ) + 3 m + 1 = 0 m(m-1)+3m+1=0 m ( m − 1 ) + 3 m + 1 = 0
m 1 , 2 = − 2 2 = − 1 m_{1,2}=\frac{-2}{2}=-1 m 1 , 2 = 2 − 2 = − 1
y 1 = x − 1 , y 2 = x − 1 l n ∣ x ∣ y_1=x^{-1},y_2=x^{-1}ln|x| y 1 = x − 1 , y 2 = x − 1 l n ∣ x ∣
5.
x2 y"-x(x+2)y'=0
y ′ = z , y ′ ′ = d z / d x y'=z,y''=dz/dx y ′ = z , y ′′ = d z / d x
Then:
x 2 z ′ − x ( x + 2 ) z = 0 x^2z'-x(x+2)z=0 x 2 z ′ − x ( x + 2 ) z = 0
d z z = x ( x + 2 ) x 2 d x \frac{dz}{z}=\frac{x(x+2)}{x^2}dx z d z = x 2 x ( x + 2 ) d x
l n ∣ z ∣ = x + 2 l n ∣ x ∣ + c 1 ln|z|=x+2ln|x|+c_1 l n ∣ z ∣ = x + 2 l n ∣ x ∣ + c 1
z = x 2 e c 1 x z=x^2e^{c_1x} z = x 2 e c 1 x
y = ∫ x 2 e c 1 x d x = e c 1 x ( c 1 2 x 2 − 2 c 1 x + 2 ) c 1 3 + c 2 y=\intop x^2e^{c_1x}dx=\frac{e^{c_1x}(c_1^2x^2-2c_1x+2)}{c_1^3}+c_2 y = ∫ x 2 e c 1 x d x = c 1 3 e c 1 x ( c 1 2 x 2 − 2 c 1 x + 2 ) + c 2
Comments