Question #210364

xdy + (y - x2 y2 ) dx = 0


1
Expert's answer
2021-07-20T15:53:42-0400

Solution

xdy+(yx2y2)dx=0xdy + (y - x^2y^2 ) dx = 0


Divide through by dxdx as follows

xdydx+(yx2y2)dxdx=0dxx{dy\over dx} + (y - x^2y^2 ){ dx\over dx} = {0\over dx}

We get

xdydx+(yx2y2)=0x{dy\over dx} + (y - x^2y^2 ) =0

xdydx+yx2y2=0x{dy\over dx} + y - x^2y^2 =0

This is a first-order nonlinear differential equation

Let u=xyu=xy

Use product rule of differentiation to differentiate u=xyu=xy with respect to xx

u=xyu=xy

dudx=(ddx(x)).y+x.(ddx(y)){du\over dx}=({d\over dx}(x)).y+x.({d\over dx}(y))

    dudx=y+xdydx\implies {du\over dx}=y+x{dy\over dx}

From dudx=y+xdydx{du\over dx}=y+x{dy\over dx} ,We can get expression for dydx{dy\over dx}

dudx=y+xdydx{du\over dx}=y+x{dy\over dx}

xdydx=dudxyx{dy\over dx}={du\over dx}-y

Now, divide through by xx to get

dydx=dudxyx=dudxxyx{dy\over dx}={{du\over dx}-y \over x}={{du\over dx}\over x}-{y\over x}


From u=xyu=xy , y=uxy={u\over x}


dydx=dudxxuxx=dudxxux2\therefore {dy\over dx}={{du\over dx}\over x}-{{u\over x}\over x} ={{du\over dx}\over x}-{u\over x^2}


Now, let's substitute dydx{dy\over dx} and yy to the differential equation


xdydx+yx2y2=0x{dy\over dx} + y - x^2y^2 =0


x(dudxxux2)+uxx2(ux)2=0x({{du\over dx}\over x}-{u\over x^2})+ {u\over x} - x^2({u\over x})^2 =0


dudxux+uxx2.u2x2=0{{du\over dx}}-{u\over x}+ {u\over x} - x^2.{u^2\over x^2} =0


dudxu2=0{{du\over dx}}- u^2=0


    dudx=u2    duu2=dx\implies {du\over dx}=u^2 \implies {du\over u^2}=dx

Take integral on both sides of duu2=dx{du\over u^2}=dx


we have


duu2=dx    1u=x+C    u=1x+C\int{du\over u^2}=\int dx \implies -{1\over u}=x+C \implies u=-{1\over x+C}


Recall y=ux    y=1x+Cx=1x+C×1x=1x(x+C)y={u\over x} \implies y={-{1\over x+C}\over x}=-{1\over x+C}\times{1\over x}=-{1\over x(x+C)}


\therefore the general solution is thus y=1x(x+C)y=-{1\over x(x+C)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS