Given Y'' + Y = {t, if 0≤t<10, if t≥1
let f(t) = {t, if 0≤t<10, if t≥1
we can express f(t) using unit step function U(t - a) = {0, if t<a1, if t≥a
hence we can express f(t) as f(t) = t − tU(t-1)
now given differential equation becomes, Y'' + Y = t − tU(t-1)
applying Laplace transform both side, ( L(f(t)) = F(s) )
L(Y'' + Y) = L(t − tU(t-1))
L(Y'') + L (Y) = L( t ) − L(tU(t-1))
s2Y(s) - sY(0) - Y'(0) + Y(s) = s21 - e-sL(t+1)
s2Y(s) - sY(0) - Y'(0) + Y(s) = s21 - e-ss2s+1
since Y(0) = 0 and Y'(0) = 0 (as given)
s2Y(s) + Y(s) = s21 - e-ss2s+1
Y(s) = s2(s2+1)1 - e-ss2(s2+1)s+1
now applying the inverse Laplace transform we get,
L−1 Y(s) = L−1 ( s2(s2+1)1 - e-ss2(s2+1)s+1 )
Y(t) = L−1 ( s2(s2+1)1) -L−1 (e-ss2(s2+1)s+1 )
Y(t) = L−1 ( s21−(s2+1)1) -L−1 (e-ss2(s2+1)s+1 )
Y(t) = L−1 ( s21−(s2+1)1) -L−1 (e-ss2(s2+1)s+1 )
Y(t) = L−1 (s21)−L−1((s2+1)1) −L−1 (e-ss2(s2+1)1+ e-s s2(s2+1)s)
Y(t) = L−1 (s21)−L−1((s2+1)1)+L−1 e-s(s21) − L−1 e-s ((s2+1)1) +L−1 e-s(s1) − L−1 e-s ((s2+1)s)
Y(t) = t - sin(t) + tU(t-1) -sin(t-1)U(t-1) - cos(t-1)U(t-1) +U(t-1)
Y(t) = t - sin(t) + (t -sin(t-1) - cos(t-1) +1)U(t-1) where U(t-1) is the unit step function.
Comments
Leave a comment