Answer to Question #209334 in Differential Equations for Mumu

Question #209334

Use Laplace transform to solve initial value problem.

Y^2+Y={t,0 less than or equal to t less than 1

{0,t greater or equal to 1

y(0)=0,y'(0)=0


1
Expert's answer
2021-06-22T13:57:29-0400

Given Y'' + Y =  {t, if 0t<10, if t1\begin{cases} t, \text{ if } 0 \leq t < 1 \\ 0, \text{ if } t \geq 1 \end{cases}


let f(t) = {t, if 0t<10, if t1\begin{cases} t, \text{ if } 0 \leq t < 1 \\ 0, \text{ if } t \geq 1 \end{cases}

we can express f(t) using unit step function U(t - a) = {0, if t<a1, if ta\begin{cases} 0, \text{ if } t < a \\ 1, \text{ if } t \geq a \end{cases}

hence we can express f(t) as f(t) = tt - ttU(t-1)

now given differential equation becomes, Y'' + Y = tt - ttU(t-1)

applying Laplace transform both side, ( L\mathcal{L}(f(t)) = F(s) )

L\mathcal{L}(Y'' + Y) = L\mathcal{L}(t(t - ttU(t-1))

L\mathcal{L}(Y'') + L\mathcal{L} (Y) = L\mathcal{L}( tt ) - L\mathcal{L}(ttU(t-1))


s2Y(s) - sY(0) - Y'(0) + Y(s) = 1s2\frac{1}{s^2} - e-sL\mathcal{L}(t+1)


s2Y(s) - sY(0) - Y'(0) + Y(s) = 1s2\frac{1}{s^2} - e-ss+1s2\frac{s+1}{s^2}


since Y(0) = 0 and Y'(0) = 0 (as given)


s2Y(s) + Y(s) = 1s2\frac{1}{s^2} - e-ss+1s2\frac{s+1}{s^2}


Y(s) = 1s2(s2+1)\frac{1}{s^2 (s^2+1)} - e-ss+1s2(s2+1)\frac{s+1}{s^2(s^2+1)}


now applying the inverse Laplace transform we get,


L1\mathcal{L}^{-1} Y(s) = L1\mathcal{L}^{-1} ( 1s2(s2+1)\frac{1}{s^2 (s^2+1)} - e-ss+1s2(s2+1)\frac{s+1}{s^2(s^2+1)} )


Y(t) = L1\mathcal{L}^{-1} ( 1s2(s2+1)\frac{1}{s^2 (s^2+1)}) -L1\mathcal{L}^{-1} (e-ss+1s2(s2+1)\frac{s+1}{s^2(s^2+1)} )


Y(t) = L1\mathcal{L}^{-1} ( 1s21(s2+1)\frac{1}{s^2 } - \frac{1}{(s^2+1)}) -L1\mathcal{L}^{-1} (e-ss+1s2(s2+1)\frac{s+1}{s^2(s^2+1)} )


Y(t) = L1\mathcal{L}^{-1} ( 1s21(s2+1)\frac{1}{s^2 } - \frac{1}{(s^2+1)}) -L1\mathcal{L}^{-1} (e-ss+1s2(s2+1)\frac{s+1}{s^2(s^2+1)} )


Y(t) = L1\mathcal{L}^{-1} (1s2)L1(1(s2+1))(\frac{1}{s^2 }) - \mathcal{L}^{-1}(\frac{1}{(s^2+1)}) L1-\mathcal{L}^{-1} (e-s1s2(s2+1)\frac{1}{s^2 (s^2+1)}+ e-s ss2(s2+1)\frac{s}{s^2 (s^2+1)})


Y(t) = L1\mathcal{L}^{-1} (1s2)L1(1(s2+1))(\frac{1}{s^2 }) - \mathcal{L}^{-1}(\frac{1}{(s^2+1)})+L1+\mathcal{L}^{-1} e-s(1s2)(\frac{1}{s^2 }) - L1\mathcal{L}^{-1} e-s (1(s2+1))(\frac{1}{(s^2+1)}) +L1\mathcal{L}^{-1} e-s(1s)(\frac{1}{s }) - L1\mathcal{L}^{-1} e-s (s(s2+1))(\frac{s}{(s^2+1)})


Y(t) = t - sin(t) + tU(t-1) -sin(t-1)U(t-1) - cos(t-1)U(t-1) +U(t-1)


Y(t) = t - sin(t) + (t -sin(t-1) - cos(t-1) +1)U(t-1) where U(t-1) is the unit step function.






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment