Question #209137

Non-exact equation and Integrating Factor


Given the equation below, solve for the general solutions.


w = dependent variable, v = independent variable


1. w(2v - w + 1) dv + v (3v - 4w + 3) dw = 0


1
Expert's answer
2021-06-23T17:23:47-0400
P(v,w)=2vww2+wP(v, w)=2vw-w^2+w

Pw=2v2w+1P_w=2v-2w+1


Q(v,w)=3v24vw+3vQ(v,w)=3v^2-4vw+3v

Qv=6v4w+3Q_v=6v-4w+3

PwQv=2v2w+16v+4w3P_w-Q_v=2v-2w+1-6v+4w-3

=4v+2w2=-4v+2w-2

PwQvP=4v+2w22vww2+w=2w=ψ(w)\dfrac{P_w-Q_v}{P}=\dfrac{-4v+2w-2}{2vw-w^2+w}=-\dfrac{2}{w}=-\psi(w)


μ(w)=e2wdw=w2\mu(w)=e^{\int{2 \over w}dw}=w^2


(2vw3w4+w3)dv+(3v2w24vw3+3vw2)dw=0(2vw^3-w^4+w^3)dv+(3v^2w^2-4vw^3+3vw^2)dw=0

Mw=6vw24w3+3w2M_w=6vw^2-4w^3+3w^2


Nv=6vw24w3+3w2N_v=6vw^2-4w^3+3w^2

Mw=6vw24w3+3w2=NvM_w=6vw^2-4w^3+3w^2=N_v

Then we write the system of two differential equations that define the function u(v,w):u(v,w):


uv=M(v,w)u_v=M(v,w)

uw=N(v,w)u_w=N(v,w)


u(v,w)=(2vw3w4+w3)dv+φ(w)u(v,w)=\int(2vw^3-w^4+w^3)dv+\varphi(w)

=v2w3vw4+vw3+φ(w)=v^2w^3-vw^4+vw^3+\varphi(w)

uw=N(v,w)u_w=N(v,w)

uw=3v2w24vw3+3vw2+φ(w)u_w=3v^2w^2-4vw^3+3vw^2+\varphi'(w)

=3v2w24vw3+3vw2=3v^2w^2-4vw^3+3vw^2

Then

φ(w)=0\varphi'(w)=0

φ(w)=C1\varphi(w)=C_1

The general solution of the differential equation


w(2vw+1)dv+v(3v4w+3)dw=0w(2v-w+1)dv+v(3v-4w+3)dw=0

is given by


v2w3vw4+vw3=Cv^2w^3-vw^4+vw^3=C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS