Answer to Question #209114 in Differential Equations for Delmundo

Question #209114

Solve for the equation of the family of curves in which the slope is (5βˆ’π‘₯)

(π‘¦βˆ’3)


Determine the type of the curve and the equation of a member passing through

(2 βˆ’ 1).



1
Expert's answer
2021-06-23T17:35:54-0400

dydx=5βˆ’xyβˆ’3yβˆ’3dy=5βˆ’xdx∫yβˆ’3dy=∫5βˆ’xdxy22βˆ’3y=5xβˆ’x22+CAt  (2,βˆ’1)(βˆ’1)22βˆ’3(βˆ’1)=5(2)βˆ’222+C72=8+CC=βˆ’92y22βˆ’3y=5xβˆ’x22βˆ’92x2+y2βˆ’10xβˆ’6y+9=0(xβˆ’5)2+(yβˆ’3)2=25+9βˆ’9=25This type of curve passingthrough  (2,βˆ’1)  is a circlewhose centre is  (5,3)and radius is  5.\displaystyle \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5 - x}{y - 3} \\ y - 3 \mathrm{d}y = 5 - x \mathrm{d}x\\ \int y - 3 \mathrm{d}y = \int 5 - x \mathrm{d}x\\ \frac{y^2}{2} - 3y = 5x - \frac{x^2}{2} + C\\ \textsf{At}\,\, (2, -1)\\ \frac{(-1)^2}{2} - 3(-1) = 5(2) - \frac{2^2}{2} + C\\ \frac{7}{2} = 8 + C\\ C = -\frac{9}{2}\\ \frac{y^2}{2} - 3y = 5x - \frac{x^2}{2} -\frac{9}{2}\\ x^2 + y^2 - 10x - 6y + 9 = 0\\ (x - 5)^2 + (y - 3)^2 = 25 + 9 - 9 = 25\\ \textsf{This type of curve passing}\\ \textsf{through}\,\,(2,-1)\,\, \textsf{is a circle}\\\textsf{whose centre is}\,\, (5,3)\\ \textsf{and radius is}\,\,5.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment