Solve for the equation of the family of curves in which the slope is (5−𝑥)
(𝑦−3)
Determine the type of the curve and the equation of a member passing through
(2 − 1).
dydx=5−xy−3y−3dy=5−xdx∫y−3dy=∫5−xdxy22−3y=5x−x22+CAt (2,−1)(−1)22−3(−1)=5(2)−222+C72=8+CC=−92y22−3y=5x−x22−92x2+y2−10x−6y+9=0(x−5)2+(y−3)2=25+9−9=25This type of curve passingthrough (2,−1) is a circlewhose centre is (5,3)and radius is 5.\displaystyle \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5 - x}{y - 3} \\ y - 3 \mathrm{d}y = 5 - x \mathrm{d}x\\ \int y - 3 \mathrm{d}y = \int 5 - x \mathrm{d}x\\ \frac{y^2}{2} - 3y = 5x - \frac{x^2}{2} + C\\ \textsf{At}\,\, (2, -1)\\ \frac{(-1)^2}{2} - 3(-1) = 5(2) - \frac{2^2}{2} + C\\ \frac{7}{2} = 8 + C\\ C = -\frac{9}{2}\\ \frac{y^2}{2} - 3y = 5x - \frac{x^2}{2} -\frac{9}{2}\\ x^2 + y^2 - 10x - 6y + 9 = 0\\ (x - 5)^2 + (y - 3)^2 = 25 + 9 - 9 = 25\\ \textsf{This type of curve passing}\\ \textsf{through}\,\,(2,-1)\,\, \textsf{is a circle}\\\textsf{whose centre is}\,\, (5,3)\\ \textsf{and radius is}\,\,5.dxdy=y−35−xy−3dy=5−xdx∫y−3dy=∫5−xdx2y2−3y=5x−2x2+CAt(2,−1)2(−1)2−3(−1)=5(2)−222+C27=8+CC=−292y2−3y=5x−2x2−29x2+y2−10x−6y+9=0(x−5)2+(y−3)2=25+9−9=25This type of curve passingthrough(2,−1)is a circlewhose centre is(5,3)and radius is5.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments