dxdyβ=yβ35βxβyβ3dy=5βxdxβ«yβ3dy=β«5βxdx2y2ββ3y=5xβ2x2β+CAt(2,β1)2(β1)2ββ3(β1)=5(2)β222β+C27β=8+CC=β29β2y2ββ3y=5xβ2x2ββ29βx2+y2β10xβ6y+9=0(xβ5)2+(yβ3)2=25+9β9=25This type of curve passingthrough(2,β1)is a circlewhose centre is(5,3)and radius is5.
Comments
Leave a comment