1. y(x2+y)dx+x(x2−2y)dy=0
(x2y+y2)dx+(x3−2xy)dy=0
M(x,y)dx+N(x,y)dy=0
M(x,y)=x2y+y2⟹∂y∂M(x,y)=My=x2+2y
N(x,y)=x3−2xy⟹∂x∂N(x,y)=Ny=3x2−2y
hence not exact since My=Nx
Integrating Factor = e∫xNMy−Nxdx=e∫xx3−2xyx2+2y−3x2+2ydx
=e∫xx(2y−x2)−2(2y−x2)dx=e∫−x2dx
=e−2∫x1dx=elnx−2=x21
multiplying the differential equation with the integrating factor x21 gives
x21[(x2y+y2)dx+(x3−2xy)dy=0]
[x2x2y+y2]dx+[x2x3−2xy]dy=0
M(x,y)=y+x2y2⟹∂y∂M(x,y)=My=1+x22y
N(x,y)=x−x2y⟹∂x∂N(x,y)=Ny=1+x22y
hence exact since My=Nx=1+x22y
There exist a function μ(x,y) such that
∂x∂μ(x,y)=M(x,y)=y+x2y2 and
∂y∂μ(x,y)=N(x,y)=x−x2y
let μ(x,y)=∫xM(x,y)dx+g(y)
=∫x(y+x2y2)dx+g(y)
μ(x,y)=xy−xy2+g(y)
⟹∂y∂μ(x,y)=x−x2y+∂y∂g(y)
⟹x−x2y+∂y∂g(y)=x−x2y
⟹∫g(y)=∫0dy⟹g(y)=0
⟹μ(x,y)=xy−xy2+0
∴ The general solution is thus xy−xy2=c
2. (2y4+1)dx+4xy3dy=0
M(x,y)=2y4+1⟹∂y∂M(x,y)=My=8y3
N(x,y)=4xy3⟹∂x∂N(x,y)=Ny=4y3
hence not exact since My=Nx
Integrating Factor = e∫xNMy−Nxdx=e∫x4xy38y3−4y3dx=e∫xx1dx=elnx=x
multiplying the differential equation with the integrating factor x gives
x[(2y4+1)dx+4xy3dy=0]
(2xy4+x)dx+4x2y3dy=0
M(x,y)=2xy4+x⟹∂y∂M(x,y)=My=8xy3
N(x,y)=4x2y3⟹∂y∂N(x,y)=Ny=8xy3
hence exact since My=Nx=8xy2
There exist a function μ(x,y) such that
∂x∂μ(x,y)=M(x,y)=2xy4+x and
∂y∂μ(x,y)=N(x,y)=4x2y3
let μ(x,y)=∫yN(x,y)dy+g(x)
=∫y4x2y3dy+g(x)
μ(x,y)=x2y4+g(x)
⟹∂x∂μ(x,y)=2xy4+∂x∂g(x)
⟹2xy4+∂x∂g(x)=2xy4+x
⟹∫dg(x)=∫xdx⟹g(x)=2x2
⟹μ(x,y)=x2y4+2x2
∴ The general solution is thus x2y4+2x2=c
3.y(x3y−1)dx+x(xy4−1)dy=0
(x3y2−y)dx+(x2y4−x)dy=0
M(x,y)=x3y2−y⟹∂y∂M(x,y)=My=2x3y−1
N(x,y)=x2y4−x⟹∂x∂N(x,y)=Nx=2xy4−1
hence not exact since My=Nx
The integrating factor of the form p(x) or p(y) do not exist for the differential equation hence has no solution
4.y2dx+xydy=0
M(x,y)=y2⟹∂y∂M(x,y)=My=2y
N(x,y)=xy⟹∂x∂N(x,y)=Nx=y
hence not exact since My=Nx
Integrating Factor = e∫xNMy−Nxdx=e∫xxy2y−ydx=e∫xx1dx=elnx=x
multiplying the differential equation with the integrating factor x gives
x[y2dx+xydy=0]
xy2dx+x2ydy=0
M(x,y)=xy2⟹∂y∂M(x,y)=My=2xy
N(x,y)=x2y⟹∂x∂N(x,y)=Nx=2xy
hence exact since My=Nx=2xy
There exist a function μ(x,y) such that
∂x∂μ(x,y)=M(x,y)=xy2 and
∂y∂μ(x,y)=N(x,y)=x2y
let μ(x,y)=∫xM(x,y)dx+g(y)
=∫xxy2dy+g(x)
μ(x,y)=2x2y2+g(x)
⟹∂y∂μ(x,y)=x2y+∂y∂g(y)
⟹x2y+∂y∂g(y)=x2y
⟹∫dg(y)=∫0dx⟹g(x)=0
⟹μ(x,y)=21x2y2+0
∴ The general solution is thus 21x2y2=c
5. y(y−1)dx+xdy=0
(y2−y)dx+xdy=0
M(x,y)=y2−y⟹∂y∂M(x,y)=My=2y−1
N(x,y)=x⟹∂x∂N(x,y)=Nx=1
hence not exact since My=Nx
Integrating Factor = e∫yNMy−Nxdy=e∫yy2−y1−2y+1dy=e∫yy2−y2−2ydy
evaluate ∫yy2−y2−2ydy by partial fraction
y(y−1)2−2y=yA+y−1B
y(y−1)2−2y=y(y−1)A(y−1)+By
⟹2−2y=Ay−A+By=(A+B)y−A
equating coefficients of y terms together and constants together we have
A+B=−2andA=−2⟹B=0
∴y(y−1)2−2y=y−2+y−10=y−2
∴∫yy2−y2−2ydy=−2∫y1dy=−2lny=lny−2
∴ Integrating Factor =elny−2=y21
multiplying the differential equation with the integrating factor y21 gives
y21[(y2−y)dx+xdy=0]
yy−1dx+y2xdy=0
M(x,y)=yy−1⟹∂y∂M(x,y)=My=y21
N(x,y)=y2x⟹∂x∂N(x,y)=Nx=y21
hence exact since My=Nx=y21
There exist a function μ(x,y) such that
∂x∂μ(x,y)=M(x,y)=yy−1 and
∂y∂μ(x,y)=N(x,y)=y2x
let μ(x,y)=∫xM(x,y)dx+g(y)
=∫xyy−1dx+g(y)
μ(x,y)=xyy−1+g(y)
⟹∂y∂μ(x,y)=y2x+∂y∂g(y)
⟹y2x+∂y∂g(y)=y2x
⟹∫dg(y)=∫0dy⟹g(y)=0
⟹μ(x,y)=xyy−1+0
∴ The general solution is thus xyy−1=c
Comments