Question #208898

INTEGRATING FACTOR


Test for exactness and find the general solution:

1. y(x2 + y)dx + x(x2 − 2y)dy = 0

2. (2y4 + 1)dx + 4xy3dy = 0

3. y(x3y − 1)dx + x(xy4 − 1)dy = 0

4. y2dx + xydy = 0

5. y(y − 1)dx + xdy = 0


1
Expert's answer
2021-06-21T14:51:44-0400

1. y(x2+y)dx+x(x22y)dy=0y(x^2 + y)dx + x(x^2 − 2y)dy = 0


(x2y+y2)dx+(x32xy)dy=0(x^2y + y^2)dx + (x^3 − 2xy)dy = 0


M(x,y)dx+N(x,y)dy=0M(x,y)dx+N(x,y)dy=0


M(x,y)=x2y+y2    M(x,y)y=My=x2+2yM(x,y)=x^2y+y^2\implies{\partial M(x,y)\over \partial y}=M_y =x^2 +2y


N(x,y)=x32xy    N(x,y)x=Ny=3x22yN(x,y)=x^3-2xy\implies{\partial N(x,y)\over \partial x}=N_y =3x^2 -2y


hence not exact since MyNxM_y \ne N_x


Integrating Factor = exMyNxNdx=exx2+2y3x2+2yx32xydxe^{ \int^x {M_y -N_x\over N}dx }=e^{ \int^x { x^2+2y-3x^2+2y\over x^3-2xy}dx }


=ex2(2yx2)x(2yx2)dx=e2xdxe^{ \int^x { -2(2y-x^2)\over x(2y-x^2)}dx}=e^{\int -{2\over x}dx}


=e21xdx=elnx2=1x2e^{-2\int {1\over x}dx}=e^{lnx^{-2}}={1\over x^2}


multiplying the differential equation with the integrating factor 1x2{1\over x^2} gives


1x2[(x2y+y2)dx+(x32xy)dy=0]{1\over x^2}[(x^2y + y^2)dx + (x^3 − 2xy)dy = 0]


[x2y+y2x2]dx+[x32xyx2]dy=0[{x^2y+y^2\over x^2}]dx+[{x^3-2xy\over x^2}]dy=0


M(x,y)=y+y2x2    M(x,y)y=My=1+2yx2M(x,y)=y+{y^2\over x^2}\implies{\partial M(x,y)\over \partial y}=M_y =1+{2y\over x^2}


N(x,y)=x2yx    N(x,y)x=Ny=1+2yx2N(x,y)=x-{2y\over x}\implies{\partial N(x,y)\over \partial x}=N_y =1 +{2y\over x^2}


hence exact since My=Nx=1+2yx2M_y = N_x=1+{2y\over x^2}


There exist a function μ(x,y)\mu(x,y) such that


μ(x,y)x=M(x,y)=y+y2x2{\partial \mu(x,y)\over \partial x}=M(x,y)=y+{y^2\over x^2} and


μ(x,y)y=N(x,y)=x2yx{\partial \mu(x,y)\over \partial y}=N(x,y)=x-{2y\over x}


let μ(x,y)=xM(x,y)dx+g(y)\mu(x,y)=\int^xM(x,y)dx+g(y)

=x(y+y2x2)dx+g(y)=\int^x(y+{y^2\over x^2})dx+g(y)


μ(x,y)=xyy2x+g(y)\mu(x,y)=xy-{y^2\over x}+g(y)


    μ(x,y)y=x2yx+g(y)y\implies {\partial \mu(x,y)\over \partial y}=x-{2y\over x}+{\partial g(y)\over \partial y}


    x2yx+g(y)y=x2yx\implies x-{2y\over x}+{\partial g(y)\over \partial y}=x-{2y\over x}


    g(y)=0dy    g(y)=0\implies \int g (y)=\int 0dy \implies g(y)=0


    μ(x,y)=xyy2x+0\implies \mu(x,y)=xy-{y^2\over x}+0


\therefore The general solution is thus xyy2x=cxy-{y^2\over x}=c


2. (2y4+1)dx+4xy3dy=0(2y^4 + 1)dx + 4xy^3dy = 0


M(x,y)=2y4+1    M(x,y)y=My=8y3M(x,y)=2y^4+1\implies{\partial M(x,y)\over \partial y}=M_y =8y^3


N(x,y)=4xy3    N(x,y)x=Ny=4y3N(x,y)=4xy^3\implies{\partial N(x,y)\over \partial x}=N_y =4y^3


hence not exact since MyNxM_y \ne N_x


Integrating Factor = exMyNxNdx=ex8y34y34xy3dx=ex1xdx=elnx=xe^{ \int^x {M_y -N_x\over N}dx }=e^{ \int^x { 8y^3-4y^3\over 4xy^3}dx }=e^{ \int^x { 1\over x}dx }=e^{ lnx}=x


multiplying the differential equation with the integrating factor xx gives

x[(2y4+1)dx+4xy3dy=0]x[(2y^4 + 1)dx + 4xy^3dy = 0]


(2xy4+x)dx+4x2y3dy=0(2xy^4 + x)dx + 4x^2y^3dy = 0


M(x,y)=2xy4+x    M(x,y)y=My=8xy3M(x,y)=2xy^4+x\implies{\partial M(x,y)\over \partial y}=M_y =8xy^3


N(x,y)=4x2y3    N(x,y)y=Ny=8xy3N(x,y)=4x^2y^3\implies{\partial N(x,y)\over \partial y}=N_y =8xy^3



hence exact since My=Nx=8xy2M_y = N_x=8xy^2


There exist a function μ(x,y)\mu(x,y) such that


μ(x,y)x=M(x,y)=2xy4+x{\partial \mu(x,y)\over \partial x}=M(x,y)=2xy^4+x and


μ(x,y)y=N(x,y)=4x2y3{\partial \mu(x,y)\over \partial y}=N(x,y)=4x^2y^3


let μ(x,y)=yN(x,y)dy+g(x)\mu(x,y)=\int^yN(x,y)dy+g(x)


=y4x2y3dy+g(x)=\int^y4x^2y^3dy+g(x)


μ(x,y)=x2y4+g(x)\mu(x,y)=x^2y^4+g(x)


    μ(x,y)x=2xy4+g(x)x\implies {\partial \mu(x,y)\over \partial x}=2xy^4+{\partial g(x)\over \partial x}


    2xy4+g(x)x=2xy4+x\implies 2xy^4+{\partial g(x)\over \partial x}=2xy^4+x


    dg(x)=xdx    g(x)=x22\implies \int d g (x)=\int xdx \implies g(x)={x^2\over 2}


    μ(x,y)=x2y4+x22\implies \mu(x,y)=x^2y^4+{x^2\over 2}


\therefore The general solution is thus x2y4+x22=cx^2y^4+{x^2\over 2}=c

3.y(x3y1)dx+x(xy41)dy=0y(x^3y − 1)dx + x(xy^4 − 1)dy = 0


(x3y2y)dx+(x2y4x)dy=0(x^3y ^2− y)dx + (x^2y^4 − x)dy = 0


M(x,y)=x3y2y    M(x,y)y=My=2x3y1M(x,y)=x^3y ^2− y\implies{\partial M(x,y)\over \partial y}=M_y =2x^3y-1


N(x,y)=x2y4x    N(x,y)x=Nx=2xy41N(x,y)=x^2y^4 − x\implies{\partial N(x,y)\over \partial x}=N_x =2xy^4-1


hence not exact since MyNxM_y \ne N_x


The integrating factor of the form p(x) or p(y) do not exist for the differential equation hence has no solution


4.y2dx+xydy=0y^2dx + xydy = 0


M(x,y)=y2    M(x,y)y=My=2yM(x,y)=y^2\implies{\partial M(x,y)\over \partial y}=M_y =2y


N(x,y)=xy    N(x,y)x=Nx=yN(x,y)=xy\implies{\partial N(x,y)\over \partial x}=N_x =y


hence not exact since MyNxM_y \ne N_x


Integrating Factor = exMyNxNdx=ex2yyxydx=ex1xdx=elnx=xe^{ \int^x {M_y -N_x\over N}dx }=e^{ \int^x { 2y-y\over xy}dx }=e^{ \int^x { 1\over x}dx }=e^{ lnx}=x


multiplying the differential equation with the integrating factor xx gives


x[y2dx+xydy=0]x[ y^2dx + xydy = 0]


xy2dx+x2ydy=0xy^2dx + x^2ydy = 0


M(x,y)=xy2    M(x,y)y=My=2xyM(x,y)=xy^2\implies{\partial M(x,y)\over \partial y}=M_y =2xy


N(x,y)=x2y    N(x,y)x=Nx=2xyN(x,y)=x^2y\implies{\partial N(x,y)\over \partial x}=N_x =2xy


hence exact since My=Nx=2xyM_y = N_x=2xy


There exist a function μ(x,y)\mu(x,y) such that


μ(x,y)x=M(x,y)=xy2{\partial \mu(x,y)\over \partial x}=M(x,y)=xy^2 and


μ(x,y)y=N(x,y)=x2y{\partial \mu(x,y)\over \partial y}=N(x,y)=x^2y


let μ(x,y)=xM(x,y)dx+g(y)\mu(x,y)=\int^xM(x,y)dx+g(y)


=xxy2dy+g(x)=\int^xxy^2dy+g(x)


μ(x,y)=x22y2+g(x)\mu(x,y)={x^2\over 2}y^2+g(x)


    μ(x,y)y=x2y+g(y)y\implies {\partial \mu(x,y)\over \partial y}=x^2y+{\partial g(y)\over \partial y}


    x2y+g(y)y=x2y\implies x^2y+{\partial g(y)\over \partial y}=x^2y


    dg(y)=0dx    g(x)=0\implies \int d g (y)=\int 0dx \implies g(x)=0


    μ(x,y)=12x2y2+0\implies \mu(x,y)={1\over 2}x^2y^2+0


\therefore The general solution is thus 12x2y2=c{1\over 2}x^2y^2=c


5. y(y1)dx+xdy=0y(y − 1)dx + xdy = 0


(y2y)dx+xdy=0(y^2 − y)dx + xdy = 0


M(x,y)=y2y    M(x,y)y=My=2y1M(x,y)=y^2-y\implies{\partial M(x,y)\over \partial y}=M_y =2y-1


N(x,y)=x    N(x,y)x=Nx=1N(x,y)=x\implies{\partial N(x,y)\over \partial x}=N_x =1


hence not exact since MyNxM_y \ne N_x


Integrating Factor = eyMyNxNdy=ey12y+1y2ydy=ey22yy2ydye^{ \int^y {M_y -N_x\over N}dy }=e^{ \int^y { 1-2y+1\over y^2-y}dy }=e^{ \int^y{ 2-2y\over y^2-y}dy }


evaluate y22yy2ydy{ \int^y{ 2-2y\over y^2-y}dy } by partial fraction


22yy(y1)=Ay+By1{ 2-2y\over y(y-1)}={A\over y}+{B\over y-1}


22yy(y1)=A(y1)+Byy(y1){ 2-2y\over y(y-1)}={A(y-1)+By\over y(y-1)}


    22y=AyA+By=(A+B)yA\implies 2-2y=Ay-A+By=(A+B)y-A


equating coefficients of y terms together and constants together we have


A+B=2andA=2    B=0A+B=-2 and A=-2\implies B=0


22yy(y1)=2y+0y1=2y\therefore{ 2-2y\over y(y-1)}={-2\over y}+{0\over y-1}={-2\over y}


y22yy2ydy=21ydy=2lny=lny2\therefore { \int^y{ 2-2y\over y^2-y}dy }=-2\int{1\over y}dy=-2lny=ln y^{-2}


\therefore Integrating Factor =elny2=1y2=e^{lny^{-2}}={1\over y^2}


multiplying the differential equation with the integrating factor 1y2{1\over y^2} gives


1y2[(y2y)dx+xdy=0]{1\over y^2}[ (y^2 − y)dx + xdy = 0]


y1ydx+xy2dy=0{y-1\over y}dx + {x\over y^2}dy = 0


M(x,y)=y1y    M(x,y)y=My=1y2M(x,y)={y-1\over y}\implies{\partial M(x,y)\over \partial y}=M_y ={1\over y^2}


N(x,y)=xy2    N(x,y)x=Nx=1y2N(x,y)={x\over y^2}\implies{\partial N(x,y)\over \partial x}=N_x ={1\over y^2}


hence exact since My=Nx=1y2M_y = N_x={1\over y^2}


There exist a function μ(x,y)\mu(x,y) such that


μ(x,y)x=M(x,y)=y1y{\partial \mu(x,y)\over \partial x}=M(x,y)={y-1\over y} and


μ(x,y)y=N(x,y)=xy2{\partial \mu(x,y)\over \partial y}=N(x,y)={x\over y^2}


let μ(x,y)=xM(x,y)dx+g(y)\mu(x,y)=\int^xM(x,y)dx+g(y)


=xy1ydx+g(y)=\int^x{y-1\over y}dx+g(y)


μ(x,y)=xy1y+g(y)\mu(x,y)=x{y-1\over y}+g(y)


    μ(x,y)y=xy2+g(y)y\implies {\partial \mu(x,y)\over \partial y}={x\over y^2}+{\partial g(y)\over \partial y}


    xy2+g(y)y=xy2\implies {x\over y^2}+{\partial g(y)\over \partial y}={x\over y^2}


    dg(y)=0dy    g(y)=0\implies \int d g (y)=\int 0dy \implies g(y)=0


    μ(x,y)=xy1y+0\implies \mu(x,y)=x{y-1\over y}+0


\therefore The general solution is thus xy1y=cx{y-1\over y}=c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS