Question #208335

Solve xp2-yp-y=0


1
Expert's answer
2021-06-20T18:49:46-0400

Solve


xp2ypy=0,p=dydx=yxp^2-yp-y=0, p=\dfrac{dy}{dx}=y'

Solve for yy


y=xp2p+1y=\dfrac{xp^2}{p+1}

Differentiate both sides with respect to xx


y=(p2+2xpp)(p+1)xp2p(p+1)2y'=\dfrac{(p^2+2xpp')(p+1)-xp^2p'}{(p+1)^2}

p3+2p2+p=p3+p2+xpp(2p+2p)p^3+2p^2+p=p^3+p^2+xpp'(2p+2-p)

p(p+1)=xpp(p+2)p(p+1)=xpp'(p+2)

If p=0p=0


x(0)2y(0)y=0=>y=0x(0)^2-y(0)-y=0=>y=0

If p0p\not=0


p+1=p(p+2)xp+1=p'(p+2)x


p(p+2p+1)=1xp'(\dfrac{p+2}{p+1})=\dfrac{1}{x}

dp(1+1p+1)=dx(1x)dp(1+\dfrac{1}{p+1})=dx(\dfrac{1}{x})

p+lnp+1=lnxlnCp+\ln|p+1|=\ln|x|-\ln C

x=C(p+1)epx=C(p+1)e^p

p=y±y2+4xy2xp=\dfrac{y\pm\sqrt{y^2+4xy}}{2x}


x=C(y±y2+4xy2x+1)e(y±y2+4xy2x)x=C(\dfrac{y\pm\sqrt{y^2+4xy}}{2x}+1)e^{({y\pm\sqrt{y^2+4xy} \over 2x})}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS