Solve
x p 2 − y p − y = 0 , p = d y d x = y ′ xp^2-yp-y=0, p=\dfrac{dy}{dx}=y' x p 2 − y p − y = 0 , p = d x d y = y ′ Solve for y y y
y = x p 2 p + 1 y=\dfrac{xp^2}{p+1} y = p + 1 x p 2 Differentiate both sides with respect to x x x
y ′ = ( p 2 + 2 x p p ′ ) ( p + 1 ) − x p 2 p ′ ( p + 1 ) 2 y'=\dfrac{(p^2+2xpp')(p+1)-xp^2p'}{(p+1)^2} y ′ = ( p + 1 ) 2 ( p 2 + 2 x p p ′ ) ( p + 1 ) − x p 2 p ′
p 3 + 2 p 2 + p = p 3 + p 2 + x p p ′ ( 2 p + 2 − p ) p^3+2p^2+p=p^3+p^2+xpp'(2p+2-p) p 3 + 2 p 2 + p = p 3 + p 2 + x p p ′ ( 2 p + 2 − p )
p ( p + 1 ) = x p p ′ ( p + 2 ) p(p+1)=xpp'(p+2) p ( p + 1 ) = x p p ′ ( p + 2 ) If p = 0 p=0 p = 0
x ( 0 ) 2 − y ( 0 ) − y = 0 = > y = 0 x(0)^2-y(0)-y=0=>y=0 x ( 0 ) 2 − y ( 0 ) − y = 0 => y = 0 If p ≠ 0 p\not=0 p = 0
p + 1 = p ′ ( p + 2 ) x p+1=p'(p+2)x p + 1 = p ′ ( p + 2 ) x
p ′ ( p + 2 p + 1 ) = 1 x p'(\dfrac{p+2}{p+1})=\dfrac{1}{x} p ′ ( p + 1 p + 2 ) = x 1
d p ( 1 + 1 p + 1 ) = d x ( 1 x ) dp(1+\dfrac{1}{p+1})=dx(\dfrac{1}{x}) d p ( 1 + p + 1 1 ) = d x ( x 1 )
p + ln ∣ p + 1 ∣ = ln ∣ x ∣ − ln C p+\ln|p+1|=\ln|x|-\ln C p + ln ∣ p + 1∣ = ln ∣ x ∣ − ln C
x = C ( p + 1 ) e p x=C(p+1)e^p x = C ( p + 1 ) e p
p = y ± y 2 + 4 x y 2 x p=\dfrac{y\pm\sqrt{y^2+4xy}}{2x} p = 2 x y ± y 2 + 4 x y
x = C ( y ± y 2 + 4 x y 2 x + 1 ) e ( y ± y 2 + 4 x y 2 x ) x=C(\dfrac{y\pm\sqrt{y^2+4xy}}{2x}+1)e^{({y\pm\sqrt{y^2+4xy} \over 2x})} x = C ( 2 x y ± y 2 + 4 x y + 1 ) e ( 2 x y ± y 2 + 4 x y )
Comments