Solve
xp2−yp−y=0,p=dxdy=y′ Solve for y
y=p+1xp2 Differentiate both sides with respect to x
y′=(p+1)2(p2+2xpp′)(p+1)−xp2p′
p3+2p2+p=p3+p2+xpp′(2p+2−p)
p(p+1)=xpp′(p+2) If p=0
x(0)2−y(0)−y=0=>y=0 If p=0
p+1=p′(p+2)x
p′(p+1p+2)=x1
dp(1+p+11)=dx(x1)
p+ln∣p+1∣=ln∣x∣−lnC
x=C(p+1)ep
p=2xy±y2+4xy
x=C(2xy±y2+4xy+1)e(2xy±y2+4xy)
Comments