Question #209121

Given the equation below, solve for the general solutions.


w = dependent variable, v = independent variable


1. w (4v + w) dv - 2 (v^2 - w) dw = 0


1
Expert's answer
2021-10-07T11:38:14-0400

Mw=4v+2wNv=4vM_w=4v+2w\neq N_v=-4v

so the equation is not exact.

w(v)=n=0anvnw(v)=\displaystyle{\sum_{n=0}^{\infin}}a_nv^n


w(v)=n=1nanvn1w'(v)=\displaystyle{\sum_{n=1}^{\infin}}na_nv^{n-1}


4vn=0anvn+(n=0anvn)22v2+2n=0anvnn=1nanvn1=04v\displaystyle{\sum_{n=0}^{\infin}}a_nv^n+(\displaystyle{\sum_{n=0}^{\infin}}a_nv^n)^2-2v^2+2\displaystyle{\sum_{n=0}^{\infin}}a_nv^n\cdot \displaystyle{\sum_{n=1}^{\infin}}na_nv^{n-1}=0


4a1v2+(2a0a2+a12)v2+(6a0a3+4a1a2+2a2a1)v2=2v24a_1v^2+(2a_0a_2+a_1^2)v^2+(6a_0a_3+4a_1a_2+2a_2a_1)v^2=2v^2


4a1+2a0a2+a12+6a0a3+6a1a2=24a_1+2a_0a_2+a_1^2+6a_0a_3+6a_1a_2=2


a0=0a_0=0


Then:


a2=24a1a126a1a_2=\frac{2-4a_1-a_1^2}{6a_1}


y(x)=a1x+24a1a126a1x2y(x)=a_1x+\frac{2-4a_1-a_1^2}{6a_1}x^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS