Mw=4v+2w=Nv=−4v
so the equation is not exact.
w(v)=n=0∑∞anvn
w′(v)=n=1∑∞nanvn−1
4vn=0∑∞anvn+(n=0∑∞anvn)2−2v2+2n=0∑∞anvn⋅n=1∑∞nanvn−1=0
4a1v2+(2a0a2+a12)v2+(6a0a3+4a1a2+2a2a1)v2=2v2
4a1+2a0a2+a12+6a0a3+6a1a2=2
a0=0
Then:
a2=6a12−4a1−a12
y(x)=a1x+6a12−4a1−a12x2
Comments