Question #209175

d2y/dx2 - dy/dx= e-x , y(0) =0, y'(0) =1'

1
Expert's answer
2021-06-21T17:29:49-0400
yy=exy''-y'=e^{-x}

Write the related homogeneous or complementary equation:


yy=0y''-y'=0


The general solution of a nonhomogeneous equation is the sum of the general solution yh(x)y_h(x) of the related homogeneous equation and a particular solution yp(x)y_p(x) of the nonhomogeneous equation:


y(x)=yh(x)+yp(x)y(x)=y_h(x)+y_p(x)

Consider a homogeneous equation 


yy=0y''-y'=0

Write the characteristic (auxiliary) equation:


r2r=0r^2-r=0

r(r1)=0r(r-1)=0

r1=0,r2=1r_1=0, r_2=1

The general solution of the homogeneous equation is


yh(x)=C1+C2exy_h(x)=C_1+C_2e^{x}



Find the particular solution of the nonhomogeneous differential equation


yp(x)=Aexy_p(x)=Ae^{-x}

yp=Aexy_p'=-Ae^{-x}

yp=Aexy_p''=Ae^{-x}

Substitute


Aex(Aex)=exAe^{-x}-(-Ae^{-x})=e^{-x}

A=12A=\dfrac{1}{2}

yp(x)=12exy_p(x)=\dfrac{1}{2}e^{-x}

The general solution of a second order homogeneous differential equation is


y(x)=C1+C2ex+12exy(x)=C_1+C_2e^{x}+\dfrac{1}{2}e^{-x}


Initial conditions: y(0)=0,y(0)=1y(0)=0, y'(0)=1



y(0)=C1+C2e0+12e0=0y(0)=C_1+C_2e^{0}+\dfrac{1}{2}e^{-0}=0

y(x)=C2ex12exy'(x)=C_2e^{x}-\dfrac{1}{2}e^{-x}

y(0)=C2e012e0=1y'(0)=C_2e^{0}-\dfrac{1}{2}e^{-0}=1

C2=32C_2=\dfrac{3}{2}

C1=2C_1=-2

The solution of the given differential equation is


y(x)=2+32ex+12exy(x)=-2+\dfrac{3}{2}e^{x}+\dfrac{1}{2}e^{-x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS