This is Lagrange's equation
Pp+Qq=R
P=xz,Q=−yz,R=Kxyz The auxiliary equation is,
Pdx=Qdy=Rdz
xzdx=−yzdy=Kxyzdz
xzdx=−yzdy=>xdx=−ydy
∫xdx=−∫ydy
lnx=−lny+lnC1
xy=C1
xzdx=Kxyzdz
xzdx=Kx(xC1)zdz
KC1xdx=dz
KC1lnx=z+C2
Kxylnx−z=C2 Hence, the required general solution is given by
ϕ(xy,Kxylnx−z)=0 where ϕ is an arbitrary function.
Comments