Question #209167

xzp - yzq= Kxyz by lagrange method


1
Expert's answer
2021-06-22T05:39:03-0400

This is Lagrange's equation


Pp+Qq=RPp+Qq=R




P=xz,Q=yz,R=KxyzP=xz, Q=-yz, R=Kxyz

The auxiliary equation is,


dxP=dyQ=dzR\dfrac{dx}{P}=\dfrac{dy}{Q}=\dfrac{dz}{R}

dxxz=dyyz=dzKxyz\dfrac{dx}{xz}=\dfrac{dy}{-yz}=\dfrac{dz}{Kxyz}

dxxz=dyyz=>dxx=dyy\dfrac{dx}{xz}=\dfrac{dy}{-yz}=>\dfrac{dx}{x}=-\dfrac{dy}{y}

dxx=dyy\int \dfrac{dx}{x}=-\int\dfrac{dy}{y}

lnx=lny+lnC1\ln x=-\ln y+\ln C_1


xy=C1xy=C_1

dxxz=dzKxyz\dfrac{dx}{xz}=\dfrac{dz}{Kxyz}

dxxz=dzKx(C1x)z\dfrac{dx}{xz}=\dfrac{dz}{Kx(\dfrac{C_1}{x})z}

KC1dxx=dzKC_1\dfrac{dx}{x}=dz

KC1lnx=z+C2KC_1\ln x=z+C_2

Kxylnxz=C2Kxy\ln x-z=C_2

Hence, the required general solution is given by


ϕ(xy,Kxylnxz)=0\phi(xy, Kxy\ln x-z)=0

where ϕ\phi is an arbitrary function.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS