given, the differential equation
(x − 1) y′′ +x y′ + y = 0,
y (0)= 2 , y′(0)= −1.
Let the solution be y=∑cnxny′=∑ncnxn−1y′′=∑n(n−1)cnxn−2substitute the above value in the given equation, we get(x−1)∑n=2∞n(n−1)cnxn−2+x∑n=1∞ncnxn−1+∑n=0∞cnxn=0∑n=2∞n(n−1)cnxn−1−∑n=2∞n(n−1)cnxn−2−∑n=1∞ncnxn+∑n=0∞cnxn=0∑n=2∞n(n+1)cn+1xn−∑n=2∞(n+1)(n+2)cn+2xn−∑n=1∞ncnxn+∑n=0∞cnxn=02c2−c1+∑n=0∞n(n+1)cn+1xn−∑n=0∞(n+1)(n+2)cn+2xn−∑n=0∞ncnxn+∑n=0∞cnxn=0We get,2c2−c1=0and the recurrence relation is,cn+2=(n+1)(n+2)n(n+1)cn+1+(1−n)cn.Thus, the solution is given by y=c0y1+c1y2.Letc0=1,c1=0,⟹y=y1.Then,c2=1/2.Therefore,y1=1+21x2+....Similarly,c0=0,c1=1,⟹y=y2.Then,c2=0,c3=0.Therefore,y2=x
Comments