Using power series method to solve the initial value problem
(x − )1 y′′ + yx ′ + y = 0 , y )0( = 2 , y′ )0( = −1 .
given, the differential equation
(x − 1) y′′ +x y′ + y = 0,
y (0)= 2 , y′(0)= −1.
Let the solution be "y=\\sum c_nx^n \\newline\ny'=\\sum nc_nx^{n-1} \\newline\ny''=\\sum n(n-1)c_nx^{n-2} \\newline\n\\text{substitute the above value in the given equation, we get}\\newline\n(x-1)\\sum_{n=2}^\\infty n(n-1)c_nx^{n-2}+x\\sum_{n=1}^\\infty nc_nx^{n-1}+\\sum_{n=0}^\\infty c_nx^n=0 \\newline\n\\sum_{n=2}^\\infty n(n-1)c_nx^{n-1}-\\sum_{n=2}^\\infty n(n-1)c_nx^{n-2}\n-\\sum_{n=1}^\\infty nc_nx^{n}+\\sum_{n=0}^\\infty c_nx^n=0 \\newline\n\\sum_{n=2}^\\infty n(n+1)c_{n+1}x^{n}-\\sum_{n=2}^\\infty (n+1)(n+2)c_{n+2}x^{n}\n-\\sum_{n=1}^\\infty nc_nx^{n}+\\sum_{n=0}^\\infty c_nx^n=0 \\newline\n2c_2-c_1+\\sum_{n=0}^\\infty n(n+1)c_{n+1}x^{n}-\\sum_{n=0}^\\infty (n+1)(n+2)c_{n+2}x^{n}\n-\\sum_{n=0}^\\infty nc_nx^{n}+\\sum_{n=0}^\\infty c_nx^n=0 \\newline\n\\text{We get,}\\newline\n2c_2-c_1=0\n\\text{and\nthe recurrence relation is,}\nc_{n+2}=\\frac{n(n+1)c_{n+1}+(1-n)c_{n}}{(n+1)(n+2)}.\\newline\n\\text{Thus, the solution is given by }\\newline\ny=c_0y1+c_1y_2.\\\\\nLet c_0=1, c_1=0, \\implies y=y_1.\\\\\nThen, c_2=1\/2.\\\\\nTherefore, y_1=1+\\frac{1}{2}x^2+... .\\\\\nSimilarly,\\newline\n c_0=0, c_1=1, \\implies y=y_2.\\newline\nThen, c_2=0, c_3=0.\\newline\nTherefore,\ny_2=x"
Comments
Leave a comment