1.
cosycos(px)+sinysin(px)=p
cos(px−y)=p
px−y=cos−1(p)
y=px−cos−1(p),p=dxdy
This is a Clairaut differential equation.
Differentiating with respect to x, both sides
p=p+xdxdp+1−p21⋅dxdp
(x+1−p21)dxdp=0 Hence
x=−1−p21 or dxdp=0=>p=c
x=−1−p21=>1−p2=x21, x<0
p2=x2x2−1
p=±xx2−1 Substitute
y=±(x2−1−cos−1(xx2−1)),−1≤x<0
p=dxdy=x2−1x−xx2−11=xx2−1
Putting p=c in the equation we have
y=cx−cos−1(c)
2.
(D3+2D2+D)y=e2x+x2+sin(2x)
y′=z,y′′=z′,y′′′=z′′
z′′+2z′+z=e2x+x2+sin(2x) Homogeneous Equation
z′′+2z′+z=0 The characteristic (auxiliary) equation
r2+2r+1=0
r1=r2=−1
zh=c1xe−x+c2e−x
zp=Ae2x+Bsin(2x)+Ccos(2x)
+(Mx2+Nx+Q)
zp′=2Ae2x+2Bcos(2x)−2Csin(2x)
+(2Mx+N)
zp′′=4Ae2x−4Bsin(2x)−4Ccos(2x)+2M
Then
4Ae2x−4Bsin(2x)−4Ccos(2x)+2M
+4Ae2x+4Bcos(2x)−4Csin(2x)+4Mx+2N
+Ae2x+Bsin(2x)+Ccos(2x)+Mx2+Nx+Q
=e2x+x2+sin(2x)
A=91
−3B−4C=1
4B−3C=0
M=21
N=−2
Q=3
zp=91e2x−253sin(2x)−254cos(2x)
+21x2−2x+3 Therefore
z(x)=c1xe−x+c2e−x+91e2x
−253sin(2x)−254cos(2x)+21x2−2x+3
∫xe−xdx=−xe−x+∫e−xdx
=−xe−x−e−x+C
y(x)=c5+c3xe−x+c4e−x+181e2x
+503cos(2x)−504sin(2x)+61x3−x2+3x
Comments