1.Solve Cos y cos px + sin y sin px = p
2.Solve
(D^3+2D^2+D)y= e^2x + x^2 + sin2x
1.
"\\cos(px-y)=p"
"px-y=\\cos^{-1}(p)"
"y=px-\\cos^{-1}(p), p=\\dfrac{dy}{dx}"
This is a Clairaut differential equation.
Differentiating with respect to "x," both sides
"(x+\\dfrac{1}{\\sqrt{1-p^2}})\\dfrac{dp}{dx}=0"
Hence
"x=-\\dfrac{1}{\\sqrt{1-p^2}}=>1-p^2=\\dfrac{1}{x^2 }, \\ x<0"
"p^2=\\dfrac{x^2-1}{x^2}"
"p=\\pm\\dfrac{\\sqrt{x^2-1}}{x}"
Substitute
"y=\\pm(\\sqrt{x^2-1}-\\cos^{-1}(\\dfrac{\\sqrt{x^2-1}}{x})), -1\\leq x<0"
Putting "p=c" in the equation we have
2.
Homogeneous Equation
The characteristic (auxiliary) equation
"r_1=r_2=-1"
"z_h=c_1xe^{-x}+c_2e^{-x}"
"z_p=Ae^{2x}+B\\sin(2x)+C\\cos(2x)"
"+(Mx^2+Nx+Q)"
"z_p'=2Ae^{2x}+2B\\cos(2x)-2C\\sin(2x)"
"+(2Mx+N)"
"z_p''=4Ae^{2x}-4B\\sin(2x)-4C\\cos(2x)+2M"
Then
"+4Ae^{2x}+4B\\cos(2x)-4C\\sin(2x)+4Mx+2N"
"+Ae^{2x}+B\\sin(2x)+C\\cos(2x)+Mx^2+Nx+Q"
"=e^{2x}+x^2+\\sin(2x)"
"A=\\dfrac{1}{9}"
"-3B-4C=1"
"4B-3C=0"
"M=\\dfrac{1}{2}"
"N=-2"
"Q=3"
"+\\dfrac{1}{2}x^2-2x+3"
Therefore
"-\\dfrac{3}{25}\\sin(2x)-\\dfrac{4}{25}\\cos(2x)+\\dfrac{1}{2}x^2-2x+3"
"\\int xe^{-x}dx=-xe^{-x}+\\int e^{-x}dx"
"=-xe^{-x}-e^{-x}+C"
"+\\dfrac{3}{50}\\cos(2x)-\\dfrac{4}{50}\\sin(2x)+\\dfrac{1}{6}x^3-x^2+3x"
Comments
Leave a comment