Question #202277

1.Solve Cos y cos px + sin y sin px = p

2.Solve

(D^3+2D^2+D)y= e^2x + x^2 + sin2x




1
Expert's answer
2021-06-09T17:00:50-0400

1.


cosycos(px)+sinysin(px)=p\cos y\cos (px)+\sin y\sin (px)=p

cos(pxy)=p\cos(px-y)=p

pxy=cos1(p)px-y=\cos^{-1}(p)

y=pxcos1(p),p=dydxy=px-\cos^{-1}(p), p=\dfrac{dy}{dx}


This is a Clairaut differential equation.

Differentiating with respect to x,x, both sides 


p=p+xdpdx+11p2dpdxp=p+x\dfrac{dp}{dx}+\dfrac{1}{\sqrt{1-p^2}}\cdot\dfrac{dp}{dx}

(x+11p2)dpdx=0(x+\dfrac{1}{\sqrt{1-p^2}})\dfrac{dp}{dx}=0

Hence


x=11p2 or dpdx=0=>p=cx=-\dfrac{1}{\sqrt{1-p^2}} \text{ or }\dfrac{dp}{dx}=0=>p=c

x=11p2=>1p2=1x2, x<0x=-\dfrac{1}{\sqrt{1-p^2}}=>1-p^2=\dfrac{1}{x^2 }, \ x<0

p2=x21x2p^2=\dfrac{x^2-1}{x^2}

p=±x21xp=\pm\dfrac{\sqrt{x^2-1}}{x}

Substitute

y=±(x21cos1(x21x)),1x<0y=\pm(\sqrt{x^2-1}-\cos^{-1}(\dfrac{\sqrt{x^2-1}}{x})), -1\leq x<0




p=dydx=xx211xx21=x21xp=\dfrac{dy}{dx}=\dfrac{x}{\sqrt{x^2-1}}-\dfrac{1}{x\sqrt{x^2-1}}=\dfrac{\sqrt{x^2-1}}{x}


Putting p=cp=c in the equation we have


y=cxcos1(c)y=cx-\cos^{-1}(c)


2.


(D3+2D2+D)y=e2x+x2+sin(2x)(D^3+2D^2+D)y=e^{2x}+x^2+\sin(2x)




y=z,y=z,y=zy'=z, y''=z', y'''=z''


z+2z+z=e2x+x2+sin(2x)z''+2z'+z=e^{2x}+x^2+\sin(2x)

Homogeneous Equation


z+2z+z=0z''+2z'+z=0

The characteristic (auxiliary) equation


r2+2r+1=0r^2+2r+1=0

r1=r2=1r_1=r_2=-1

zh=c1xex+c2exz_h=c_1xe^{-x}+c_2e^{-x}

zp=Ae2x+Bsin(2x)+Ccos(2x)z_p=Ae^{2x}+B\sin(2x)+C\cos(2x)

+(Mx2+Nx+Q)+(Mx^2+Nx+Q)

zp=2Ae2x+2Bcos(2x)2Csin(2x)z_p'=2Ae^{2x}+2B\cos(2x)-2C\sin(2x)

+(2Mx+N)+(2Mx+N)

zp=4Ae2x4Bsin(2x)4Ccos(2x)+2Mz_p''=4Ae^{2x}-4B\sin(2x)-4C\cos(2x)+2M

Then


4Ae2x4Bsin(2x)4Ccos(2x)+2M4Ae^{2x}-4B\sin(2x)-4C\cos(2x)+2M

+4Ae2x+4Bcos(2x)4Csin(2x)+4Mx+2N+4Ae^{2x}+4B\cos(2x)-4C\sin(2x)+4Mx+2N

+Ae2x+Bsin(2x)+Ccos(2x)+Mx2+Nx+Q+Ae^{2x}+B\sin(2x)+C\cos(2x)+Mx^2+Nx+Q

=e2x+x2+sin(2x)=e^{2x}+x^2+\sin(2x)

A=19A=\dfrac{1}{9}

3B4C=1-3B-4C=1

4B3C=04B-3C=0

M=12M=\dfrac{1}{2}

N=2N=-2

Q=3Q=3


zp=19e2x325sin(2x)425cos(2x)z_p=\dfrac{1}{9}e^{2x}-\dfrac{3}{25}\sin(2x)-\dfrac{4}{25}\cos(2x)

+12x22x+3+\dfrac{1}{2}x^2-2x+3

Therefore


z(x)=c1xex+c2ex+19e2xz(x)=c_1xe^{-x}+c_2e^{-x}+\dfrac{1}{9}e^{2x}

325sin(2x)425cos(2x)+12x22x+3-\dfrac{3}{25}\sin(2x)-\dfrac{4}{25}\cos(2x)+\dfrac{1}{2}x^2-2x+3

xexdx=xex+exdx\int xe^{-x}dx=-xe^{-x}+\int e^{-x}dx

=xexex+C=-xe^{-x}-e^{-x}+C


y(x)=c5+c3xex+c4ex+118e2xy(x)=c_5+c_3xe^{-x}+c_4e^{-x}+\dfrac{1}{18}e^{2x}

+350cos(2x)450sin(2x)+16x3x2+3x+\dfrac{3}{50}\cos(2x)-\dfrac{4}{50}\sin(2x)+\dfrac{1}{6}x^3-x^2+3x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS