Answer to Question #202277 in Differential Equations for king

Question #202277

1.Solve Cos y cos px + sin y sin px = p

2.Solve

(D^3+2D^2+D)y= e^2x + x^2 + sin2x




1
Expert's answer
2021-06-09T17:00:50-0400

1.


"\\cos y\\cos (px)+\\sin y\\sin (px)=p"

"\\cos(px-y)=p"

"px-y=\\cos^{-1}(p)"

"y=px-\\cos^{-1}(p), p=\\dfrac{dy}{dx}"


This is a Clairaut differential equation.

Differentiating with respect to "x," both sides 


"p=p+x\\dfrac{dp}{dx}+\\dfrac{1}{\\sqrt{1-p^2}}\\cdot\\dfrac{dp}{dx}"

"(x+\\dfrac{1}{\\sqrt{1-p^2}})\\dfrac{dp}{dx}=0"

Hence


"x=-\\dfrac{1}{\\sqrt{1-p^2}} \\text{ or }\\dfrac{dp}{dx}=0=>p=c"

"x=-\\dfrac{1}{\\sqrt{1-p^2}}=>1-p^2=\\dfrac{1}{x^2 }, \\ x<0"

"p^2=\\dfrac{x^2-1}{x^2}"

"p=\\pm\\dfrac{\\sqrt{x^2-1}}{x}"

Substitute

"y=\\pm(\\sqrt{x^2-1}-\\cos^{-1}(\\dfrac{\\sqrt{x^2-1}}{x})), -1\\leq x<0"




"p=\\dfrac{dy}{dx}=\\dfrac{x}{\\sqrt{x^2-1}}-\\dfrac{1}{x\\sqrt{x^2-1}}=\\dfrac{\\sqrt{x^2-1}}{x}"


Putting "p=c" in the equation we have


"y=cx-\\cos^{-1}(c)"


2.


"(D^3+2D^2+D)y=e^{2x}+x^2+\\sin(2x)"




"y'=z, y''=z', y'''=z''"


"z''+2z'+z=e^{2x}+x^2+\\sin(2x)"

Homogeneous Equation


"z''+2z'+z=0"

The characteristic (auxiliary) equation


"r^2+2r+1=0"

"r_1=r_2=-1"

"z_h=c_1xe^{-x}+c_2e^{-x}"

"z_p=Ae^{2x}+B\\sin(2x)+C\\cos(2x)"

"+(Mx^2+Nx+Q)"

"z_p'=2Ae^{2x}+2B\\cos(2x)-2C\\sin(2x)"

"+(2Mx+N)"

"z_p''=4Ae^{2x}-4B\\sin(2x)-4C\\cos(2x)+2M"

Then


"4Ae^{2x}-4B\\sin(2x)-4C\\cos(2x)+2M"

"+4Ae^{2x}+4B\\cos(2x)-4C\\sin(2x)+4Mx+2N"

"+Ae^{2x}+B\\sin(2x)+C\\cos(2x)+Mx^2+Nx+Q"

"=e^{2x}+x^2+\\sin(2x)"

"A=\\dfrac{1}{9}"

"-3B-4C=1"

"4B-3C=0"

"M=\\dfrac{1}{2}"

"N=-2"

"Q=3"


"z_p=\\dfrac{1}{9}e^{2x}-\\dfrac{3}{25}\\sin(2x)-\\dfrac{4}{25}\\cos(2x)"

"+\\dfrac{1}{2}x^2-2x+3"

Therefore


"z(x)=c_1xe^{-x}+c_2e^{-x}+\\dfrac{1}{9}e^{2x}"

"-\\dfrac{3}{25}\\sin(2x)-\\dfrac{4}{25}\\cos(2x)+\\dfrac{1}{2}x^2-2x+3"

"\\int xe^{-x}dx=-xe^{-x}+\\int e^{-x}dx"

"=-xe^{-x}-e^{-x}+C"


"y(x)=c_5+c_3xe^{-x}+c_4e^{-x}+\\dfrac{1}{18}e^{2x}"

"+\\dfrac{3}{50}\\cos(2x)-\\dfrac{4}{50}\\sin(2x)+\\dfrac{1}{6}x^3-x^2+3x"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS