(D4−64)y=xcosx⇒y(4)−64y=xcosx
The characteristic equation has the form
k4−64=0
(k2−8)(k2+8)=0
(k−8)(k+8)(k−8i)(k+8i)=0
k1,2=±8,k3,4=±8i
Then the general solution of the homogeneous equation is
yh=C1e8x+C2e−8x+C3cos8x+C4sin8x
We will seek a particular solution in the form
Y=(Ax+B)cosx+(Cx+D)sinx⇒Y′=Acosx−(Ax+B)sinx+Csinx+(Cx+D)cosx=(Cx+D+A)cosx+(−Ax−B+C)sinx⇒
⇒Y′′=Ccosx−(Cx+D+A)sinx−Asinx+(−Ax−B+C)cosx=(−Ax−B+2C)cosx+(−Cx−D−2A)sinx⇒
⇒Y′′′=−Acosx−(−Ax−B+2C)sinx−Csinx+(−Cx−D−2A)cosx=(−Cx−D−3A)cosx+(Ax+B−3C)sinx⇒
⇒Y(4)=−Ccosx−(−Cx−D−3A)sinx+Asinx+(Ax+B−3C)cosx=(Ax+B−4C)cosx+(Cx+D+4A)sinx
Substitute into the equation:
(Ax+B−4C)cosx+(Cx+D+4A)sinx−64((Ax+B)cosx+(Cx+D)sinx)=xcosx
xcosx(A−64A)+cosx(B−4C−64B)+xsinx(C−64C)+sinx(D+4A−64D)=xcosx
⎩⎨⎧−63A=1−63B−4C=0−63C=04A−63D=0
A=−631,B=0,C=0,D=−39694
Then
Y=−631xcosx−39694sinx
y=yh+Y=C1e8x+C2e−8x+C3cos8x+C4sin8x−631xcosx−39694sinx
Answer: y=C1e8x+C2e−8x+C3cos8x+C4sin8x−631xcosx−39694sinx
Comments