Question #201726

(D4 - 64) y= x cos x


1
Expert's answer
2021-06-02T14:40:27-0400

(D464)y=xcosxy(4)64y=xcosx\left( {{D^4} - 64} \right)y = x\cos x \Rightarrow {y^{(4)}} - 64y = x\cos x

The characteristic equation has the form

k464=0{k^4} - 64 = 0

(k28)(k2+8)=0({k^2} - 8)({k^2} + 8) = 0

(k8)(k+8)(k8i)(k+8i)=0(k - \sqrt 8 )(k + \sqrt 8 )(k - \sqrt 8 i)(k + \sqrt 8 i) = 0

k1,2=±8,k3,4=±8i{k_{1,2}} = \pm \sqrt 8 ,\,\,{k_{3,4}} = \pm \sqrt 8 i

Then the general solution of the homogeneous equation is

yh=C1e8x+C2e8x+C3cos8x+C4sin8x{y_h} = {C_1}{e^{\sqrt 8 x}} + {C_2}{e^{ - \sqrt 8 x}} + {C_3}\cos \sqrt 8 x + {C_4}\sin \sqrt 8 x

We will seek a particular solution in the form

Y=(Ax+B)cosx+(Cx+D)sinxY=Acosx(Ax+B)sinx+Csinx+(Cx+D)cosx=(Cx+D+A)cosx+(AxB+C)sinxY = (Ax + B)\cos x + (Cx + D)\sin x \Rightarrow Y' = A\cos x - (Ax + B)\sin x + C\sin x + (Cx + D)\cos x = (Cx + D + A)\cos x + ( - Ax - B + C)\sin x \Rightarrow

Y=Ccosx(Cx+D+A)sinxAsinx+(AxB+C)cosx=(AxB+2C)cosx+(CxD2A)sinx\Rightarrow Y'' = C\cos x - (Cx + D + A)\sin x - A\sin x + ( - Ax - B + C)\cos x = ( - Ax - B + 2C)\cos x + ( - Cx - D - 2A)\sin x \Rightarrow

Y=Acosx(AxB+2C)sinxCsinx+(CxD2A)cosx=(CxD3A)cosx+(Ax+B3C)sinx\Rightarrow Y''' = - A\cos x - ( - Ax - B + 2C)\sin x - C\sin x + ( - Cx - D - 2A)\cos x = ( - Cx - D - 3A)\cos x + (Ax + B - 3C)\sin x \Rightarrow

Y(4)=Ccosx(CxD3A)sinx+Asinx+(Ax+B3C)cosx=(Ax+B4C)cosx+(Cx+D+4A)sinx\Rightarrow {Y^{(4)}} = - C\cos x - ( - Cx - D - 3A)\sin x + A\sin x + (Ax + B - 3C)\cos x = (Ax + B - 4C)\cos x + (Cx + D + 4A)\sin x

Substitute into the equation:

(Ax+B4C)cosx+(Cx+D+4A)sinx64((Ax+B)cosx+(Cx+D)sinx)=xcosx(Ax + B - 4C)\cos x + (Cx + D + 4A)\sin x - 64\left( {(Ax + B)\cos x + (Cx + D)\sin x} \right) = x\cos x

xcosx(A64A)+cosx(B4C64B)+xsinx(C64C)+sinx(D+4A64D)=xcosxx\cos x(A - 64A) + \cos x(B - 4C - 64B) + x\sin x(C - 64C) + \sin x(D + 4A - 64D) = x\cos x

{63A=163B4C=063C=04A63D=0\left\{ \begin{array}{l} - 63A = 1\\ - 63B - 4C = 0\\ - 63C = 0\\ 4A - 63D = 0 \end{array} \right.

A=163,B=0,C=0,D=43969A = - \frac{1}{{63}},\,\,B = 0,\,C = 0,\,D = - \frac{4}{{3969}}

Then

Y=163xcosx43969sinxY = - \frac{1}{{63}}x\cos x - \frac{4}{{3969}}\sin x

y=yh+Y=C1e8x+C2e8x+C3cos8x+C4sin8x163xcosx43969sinxy = {y_h} + Y = {C_1}{e^{\sqrt 8 x}} + {C_2}{e^{ - \sqrt 8 x}} + {C_3}\cos \sqrt 8 x + {C_4}\sin \sqrt 8 x - \frac{1}{{63}}x\cos x - \frac{4}{{3969}}\sin x

Answer: y=C1e8x+C2e8x+C3cos8x+C4sin8x163xcosx43969sinxy = {C_1}{e^{\sqrt 8 x}} + {C_2}{e^{ - \sqrt 8 x}} + {C_3}\cos \sqrt 8 x + {C_4}\sin \sqrt 8 x - \frac{1}{{63}}x\cos x - \frac{4}{{3969}}\sin x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS