(D4 - 64) y= x cos x
"\\left( {{D^4} - 64} \\right)y = x\\cos x \\Rightarrow {y^{(4)}} - 64y = x\\cos x"
The characteristic equation has the form
"{k^4} - 64 = 0"
"({k^2} - 8)({k^2} + 8) = 0"
"(k - \\sqrt 8 )(k + \\sqrt 8 )(k - \\sqrt 8 i)(k + \\sqrt 8 i) = 0"
"{k_{1,2}} = \\pm \\sqrt 8 ,\\,\\,{k_{3,4}} = \\pm \\sqrt 8 i"
Then the general solution of the homogeneous equation is
"{y_h} = {C_1}{e^{\\sqrt 8 x}} + {C_2}{e^{ - \\sqrt 8 x}} + {C_3}\\cos \\sqrt 8 x + {C_4}\\sin \\sqrt 8 x"
We will seek a particular solution in the form
"Y = (Ax + B)\\cos x + (Cx + D)\\sin x \\Rightarrow Y' = A\\cos x - (Ax + B)\\sin x + C\\sin x + (Cx + D)\\cos x = (Cx + D + A)\\cos x + ( - Ax - B + C)\\sin x \\Rightarrow"
"\\Rightarrow Y'' = C\\cos x - (Cx + D + A)\\sin x - A\\sin x + ( - Ax - B + C)\\cos x = ( - Ax - B + 2C)\\cos x + ( - Cx - D - 2A)\\sin x \\Rightarrow"
"\\Rightarrow Y''' = - A\\cos x - ( - Ax - B + 2C)\\sin x - C\\sin x + ( - Cx - D - 2A)\\cos x = ( - Cx - D - 3A)\\cos x + (Ax + B - 3C)\\sin x \\Rightarrow"
"\\Rightarrow {Y^{(4)}} = - C\\cos x - ( - Cx - D - 3A)\\sin x + A\\sin x + (Ax + B - 3C)\\cos x = (Ax + B - 4C)\\cos x + (Cx + D + 4A)\\sin x"
Substitute into the equation:
"(Ax + B - 4C)\\cos x + (Cx + D + 4A)\\sin x - 64\\left( {(Ax + B)\\cos x + (Cx + D)\\sin x} \\right) = x\\cos x"
"x\\cos x(A - 64A) + \\cos x(B - 4C - 64B) + x\\sin x(C - 64C) + \\sin x(D + 4A - 64D) = x\\cos x"
"\\left\\{ \\begin{array}{l}\n - 63A = 1\\\\\n - 63B - 4C = 0\\\\\n - 63C = 0\\\\\n4A - 63D = 0\n\\end{array} \\right."
"A = - \\frac{1}{{63}},\\,\\,B = 0,\\,C = 0,\\,D = - \\frac{4}{{3969}}"
Then
"Y = - \\frac{1}{{63}}x\\cos x - \\frac{4}{{3969}}\\sin x"
"y = {y_h} + Y = {C_1}{e^{\\sqrt 8 x}} + {C_2}{e^{ - \\sqrt 8 x}} + {C_3}\\cos \\sqrt 8 x + {C_4}\\sin \\sqrt 8 x - \\frac{1}{{63}}x\\cos x - \\frac{4}{{3969}}\\sin x"
Answer: "y = {C_1}{e^{\\sqrt 8 x}} + {C_2}{e^{ - \\sqrt 8 x}} + {C_3}\\cos \\sqrt 8 x + {C_4}\\sin \\sqrt 8 x - \\frac{1}{{63}}x\\cos x - \\frac{4}{{3969}}\\sin x"
Comments
Leave a comment