Answer to Question #201372 in Differential Equations for fhumulani raphunga

Question #201372

(D+3)^2y=sinh2x


1
Expert's answer
2021-06-01T12:22:07-0400

Ans:-"(D+3)^2y=Sinh2x"

Auxiliary equation

"(D+3)^2=0\\\\"

"D=-3,-3" are the roots

"\\therefore C.F.=(C_1+C_2x)e^{-3x}"


"Sinhx=\\dfrac{e^x-e^{-x}}{2}"

Particular Integral


"P.I.=\\dfrac{Sinh2x}{(D+3)^2}"


"=\\dfrac{1}{2}[\\dfrac{e^{2x}-e^{-2x}}{(D+3)^2}]"


"=\\dfrac{1}{2}\\dfrac{e^{2x}}{(D+3)^2}-\\dfrac{1}{2}\\dfrac{e^{-2x}}{(D+3)^2}"


"=\\dfrac{1}{2}\\dfrac{e^{2x}}{(2+3)^2}-\\dfrac{1}{2}\\dfrac{e^{-2x}}{(-2+3)^2}"


"=\\dfrac{e^{2x}}{50}-\\dfrac{e^{-2x}}{2}"


Hence the complete solution

"Y=C.F.+P.I"


"Y=(C_1+C_2x)e^{-3x}+\\ \\dfrac{e^{2x}}{50}-\\dfrac{e^{-2x}}{2}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS