(D+3)^2y=sinh2x
Ans:-"(D+3)^2y=Sinh2x"
Auxiliary equation
"(D+3)^2=0\\\\"
"D=-3,-3" are the roots
"\\therefore C.F.=(C_1+C_2x)e^{-3x}"
"Sinhx=\\dfrac{e^x-e^{-x}}{2}"
Particular Integral
"P.I.=\\dfrac{Sinh2x}{(D+3)^2}"
"=\\dfrac{1}{2}[\\dfrac{e^{2x}-e^{-2x}}{(D+3)^2}]"
"=\\dfrac{1}{2}\\dfrac{e^{2x}}{(D+3)^2}-\\dfrac{1}{2}\\dfrac{e^{-2x}}{(D+3)^2}"
"=\\dfrac{1}{2}\\dfrac{e^{2x}}{(2+3)^2}-\\dfrac{1}{2}\\dfrac{e^{-2x}}{(-2+3)^2}"
"=\\dfrac{e^{2x}}{50}-\\dfrac{e^{-2x}}{2}"
Hence the complete solution
"Y=C.F.+P.I"
"Y=(C_1+C_2x)e^{-3x}+\\ \\dfrac{e^{2x}}{50}-\\dfrac{e^{-2x}}{2}"
Comments
Leave a comment