Question #201372

(D+3)^2y=sinh2x


1
Expert's answer
2021-06-01T12:22:07-0400

Ans:-(D+3)2y=Sinh2x(D+3)^2y=Sinh2x

Auxiliary equation

(D+3)2=0(D+3)^2=0\\

D=3,3D=-3,-3 are the roots

C.F.=(C1+C2x)e3x\therefore C.F.=(C_1+C_2x)e^{-3x}


Sinhx=exex2Sinhx=\dfrac{e^x-e^{-x}}{2}

Particular Integral


P.I.=Sinh2x(D+3)2P.I.=\dfrac{Sinh2x}{(D+3)^2}


=12[e2xe2x(D+3)2]=\dfrac{1}{2}[\dfrac{e^{2x}-e^{-2x}}{(D+3)^2}]


=12e2x(D+3)212e2x(D+3)2=\dfrac{1}{2}\dfrac{e^{2x}}{(D+3)^2}-\dfrac{1}{2}\dfrac{e^{-2x}}{(D+3)^2}


=12e2x(2+3)212e2x(2+3)2=\dfrac{1}{2}\dfrac{e^{2x}}{(2+3)^2}-\dfrac{1}{2}\dfrac{e^{-2x}}{(-2+3)^2}


=e2x50e2x2=\dfrac{e^{2x}}{50}-\dfrac{e^{-2x}}{2}


Hence the complete solution

Y=C.F.+P.IY=C.F.+P.I


Y=(C1+C2x)e3x+ e2x50e2x2Y=(C_1+C_2x)e^{-3x}+\ \dfrac{e^{2x}}{50}-\dfrac{e^{-2x}}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS