We shall apply the heat equation. Which is:
Ut=cUxx
To solve this, let U=XT⟹Ut=XT′,Uxx=X′′T
The equation becomes:
XT′=cX′′TcTT′=XX′′=−λ2
Solving the two differential equations, we have that:
T=Ae−cλ2t and X=Bcosλx+Csinλx
Thus, U(x,t)=XT′=(A1cosλx+A2sinλx)e−cλ2t
Applying the boundary conditions U(0,t)=U(L,t)=0
U(0,t)=A1e−cλ2t=0But, exponential does not vanishes⟹A1=0U(x,t)=A2e−cλ2tsinλx
Applying the second condition;
U(L,t)=A2e−cλ2tsinλL=0⟹A2sinλL=0But, A2=0⟹sinλL=0⟹λ=Lnπ,n∈ZThus, U(x,t)=A2e−c(Lnπ)2tsinLnπx (∗)
Now to apply the conditions given in the question.
(i) U(x,0)=f(x)=U0
By superposition principle, (*) becomes
U(x,t)=∑n=0∞Ane−c(Lnπ)2tsinLnπxU(x,0)=∑n=0∞AnsinLnπx=U0
This is nothing but the Fourier sine series of U0
Where,. An=L2∫0LU0sinLnπx dx=nπ2U0[1−(−1)n]
Thus U(x,t)=∑n=0∞nπ2U0[1−(−1)n]e−c(Lnπ)2tsinLnπx
(ii) For the condition U(x,0)=f(x)=ksinLπx
U(x,0) from (∗)isU(x,0)=A2sinLnπx=ksinLπxComparing both sidesA2=k,n=1Thus, U(x,t)=ke−c(Lπ)2sinLπx
Comments