Question #200855

Determine the temperature distribution u(x, t) in a bar of length L, whose ends are kept at zero

temperature, and whose initial temperature is:

i) u(x, 0) = f(x) = U0

ii) u(x, 0) = f(x) = k sin πx/L



1
Expert's answer
2022-01-10T17:08:08-0500

We shall apply the heat equation. Which is:

Ut=cUxxU_t=cU_{xx}

To solve this, let U=XT    Ut=XT,Uxx=XTU=XT\implies U_t=XT',U_{xx}=X''T

The equation becomes:

XT=cXTTcT=XX=λ2XT'=cX''T\\ \frac{T'}{cT}=\frac{X''}{X}=-\lambda^2

Solving the two differential equations, we have that:

T=Aecλ2t and X=Bcosλx+CsinλxT=Ae^{-c\lambda^2t} \text{ and } X=B\cos \lambda x+ C \sin \lambda x

Thus, U(x,t)=XT=(A1cosλx+A2sinλx)ecλ2tU(x,t)=XT'=(A_1\cos \lambda x+ A_2 \sin \lambda x)e^{-c\lambda^2t}

Applying the boundary conditions U(0,t)=U(L,t)=0U(0,t)=U(L,t)=0

U(0,t)=A1ecλ2t=0But, exponential does not vanishes    A1=0U(x,t)=A2ecλ2tsinλxU(0,t)= A_1e^{-c\lambda^2t}=0\\ \text{But, exponential does not vanishes}\\ \implies A_1=0\\ U(x,t)=A_2e^{-c\lambda^2t}\sin \lambda x

Applying the second condition;

U(L,t)=A2ecλ2tsinλL=0    A2sinλL=0But, A20    sinλL=0    λ=nπL,nZThus, U(x,t)=A2ec(nπL)2tsinnπLx                ()U(L,t)=A_2e^{-c\lambda^2t} \sin \lambda L=0\\ \implies A_2\sin \lambda L=0\\ \text{But, } A_2≠0\\ \implies \sin \lambda L=0\implies \lambda=\frac{n \pi}{L}, n\in \Z\\ \text{Thus, } U(x,t)=A_2e^{-c(\frac{n \pi}{L})^2t}\sin \frac{n \pi}{L}x~~~~~~~~~~~~~~~~(*)

Now to apply the conditions given in the question.

(i) U(x,0)=f(x)=U0U(x,0)=f(x)=U_0

By superposition principle, (*) becomes

U(x,t)=n=0Anec(nπL)2tsinnπLxU(x,0)=n=0AnsinnπLx=U0U(x,t)=∑_{n=0}^\infty​A_n​e^{−c(\frac{n \pi}{L})^2t}\sin \frac{n \pi}{L}​x\\ U(x,0)=\sum_{n=0}^\infty A_n\sin \frac{n \pi}{L} x=U_0

This is nothing but the Fourier sine series of U0U_0

Where,. An=2L0LU0sinnπLx dx=2nπU0[1(1)n]A_n=\frac{2}{L}\int_0^LU_0 \sin\frac{n \pi}{L}x ~dx=\frac{2}{n\pi}U_0[1-(-1)^n]

Thus U(x,t)=n=02nπU0[1(1)n]ec(nπL)2tsinnπLxU(x,t)=\sum_{n=0}^\infty \frac{2}{n\pi}U_0[1-(-1)^n] e^{-c(\frac{n \pi}{L})^2t}\sin \frac{n \pi}{L} x\\


(ii) For the condition U(x,0)=f(x)=ksinπLxU(x,0)=f(x)=k \sin \frac{ \pi}{L}x

U(x,0) from ()isU(x,0)=A2sinnπLx=ksinπLxComparing both sidesA2=k,n=1Thus, U(x,t)=kec(πL)2sinπLxU(x,0) \text{ from } (*) is\\ U(x,0)=A_2\sin \frac{n \pi}{L}x= k \sin \frac{\pi}{L}x\\ \text{Comparing both sides}\\ A_2=k, n=1\\ \text{Thus, } U(x,t)=ke^{-c(\frac{\pi}{L})^2}\sin \frac{\pi}{L}x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS