Determine the temperature distribution u(x, t) in a bar of length L, whose ends are kept at zero
temperature, and whose initial temperature is:
i) u(x, 0) = f(x) = U0
ii) u(x, 0) = f(x) = k sin πx/L
We shall apply the heat equation. Which is:
"U_t=cU_{xx}"
To solve this, let "U=XT\\implies U_t=XT',U_{xx}=X''T"
The equation becomes:
"XT'=cX''T\\\\\n\\frac{T'}{cT}=\\frac{X''}{X}=-\\lambda^2"
Solving the two differential equations, we have that:
"T=Ae^{-c\\lambda^2t} \\text{ and } X=B\\cos \\lambda x+ C \\sin \\lambda x"
Thus, "U(x,t)=XT'=(A_1\\cos \\lambda x+ A_2 \\sin \\lambda x)e^{-c\\lambda^2t}"
Applying the boundary conditions "U(0,t)=U(L,t)=0"
"U(0,t)= A_1e^{-c\\lambda^2t}=0\\\\\n\\text{But, exponential does not vanishes}\\\\\n\\implies A_1=0\\\\\nU(x,t)=A_2e^{-c\\lambda^2t}\\sin \\lambda x"
Applying the second condition;
"U(L,t)=A_2e^{-c\\lambda^2t} \\sin \\lambda L=0\\\\\n\\implies A_2\\sin \\lambda L=0\\\\\n\\text{But, } A_2\u22600\\\\\n\\implies \\sin \\lambda L=0\\implies \\lambda=\\frac{n \\pi}{L}, n\\in \\Z\\\\\n\\text{Thus, } U(x,t)=A_2e^{-c(\\frac{n \\pi}{L})^2t}\\sin \\frac{n \\pi}{L}x~~~~~~~~~~~~~~~~(*)"
Now to apply the conditions given in the question.
(i) "U(x,0)=f(x)=U_0"
By superposition principle, (*) becomes
"U(x,t)=\u2211_{n=0}^\\infty\u200bA_n\u200be^{\u2212c(\\frac{n \\pi}{L})^2t}\\sin \\frac{n \\pi}{L}\u200bx\\\\\nU(x,0)=\\sum_{n=0}^\\infty A_n\\sin \\frac{n \\pi}{L} x=U_0"
This is nothing but the Fourier sine series of "U_0"
Where,. "A_n=\\frac{2}{L}\\int_0^LU_0 \\sin\\frac{n \\pi}{L}x ~dx=\\frac{2}{n\\pi}U_0[1-(-1)^n]"
Thus "U(x,t)=\\sum_{n=0}^\\infty \\frac{2}{n\\pi}U_0[1-(-1)^n] e^{-c(\\frac{n \\pi}{L})^2t}\\sin \\frac{n \\pi}{L} x\\\\"
(ii) For the condition "U(x,0)=f(x)=k \\sin \\frac{ \\pi}{L}x"
"U(x,0) \\text{ from } (*) is\\\\\nU(x,0)=A_2\\sin \\frac{n \\pi}{L}x= k \\sin \\frac{\\pi}{L}x\\\\\n\\text{Comparing both sides}\\\\\nA_2=k, n=1\\\\\n\\text{Thus, } U(x,t)=ke^{-c(\\frac{\\pi}{L})^2}\\sin \\frac{\\pi}{L}x"
Comments
Leave a comment