(1).ada=9x2dx−ydy
Integrating both sides:
∫ada=∫9x2dx−∫ydy
2a2=9×3x3−2y2+C
2a2=3x3−2y2+C
(2). dxdy=1+2y2ycosx
On variable separation we get:
(y1+2y)dy=cosxdx
Integrating both sides:
∫(y1+2y)dy=∫cosxdx
logy+y2=sinx+C
Now it is given that:
y=1 when x=0, so put in above equation:
log(1)+1=sin(o)+c
C=1
So the solution is:
logy+y2=sinx+1⇒logy+y2−sinx−1=0
(3).(cosy+2)dxdy=2x
cosydy+2dy=2xdx
siny+2y=x2+c
siny+2y−x2=c
Comments
Leave a comment