Answer to Question #201024 in Differential Equations for Rijak

Question #201024

Show complete solution. Use equation function.

1. Find the general solution of ada = 9x²dx- ydy.

2. Find the particular solution of y' = ycosx/1+2y² given y (x) = 1; y (0) = 1.

3. Find the general solution to the equation (cos y + 2) y' = 2x.


1
Expert's answer
2021-06-01T12:20:54-0400

(1).ada=9x2dxydyada=9x^2dx-ydy

Integrating both sides:


ada=9x2dxydy\int ada= \int9x^2dx -\int ydy


a22=9×x33y22+C\dfrac{a^2}{2}=9 \times\dfrac{x^3}{3} -\dfrac{y^2}{2} +C


a22=3x3y22+C\dfrac{a^2}{2}= 3{x^3} -\dfrac{y^2}{2} +C


(2). dydx=ycosx1+2y2\dfrac{dy}{dx} =\dfrac{y cosx}{1+2y^2}


On variable separation we get:


(1y+2y)dy=cosxdx(\dfrac{1}{y} +2y)dy=cos xdx


Integrating both sides:


(1y+2y)dy=cosxdx\int(\dfrac{1}{y} +2y)dy= \int cos xdx


logy+y2=sinx+Clog y +y^2=sinx +C


Now it is given that:

y=1 when x=0, so put in above equation:


log(1)+1=sin(o)+clog(1)+1=sin(o) +c


C=1C=1

So the solution is:


logy+y2=sinx+1logy+y2sinx1=0logy+y^2=sinx +1 \Rightarrow logy+y^2-sinx -1 =0


(3).(cosy+2)dydx=2x(cosy+2) \dfrac{dy}{dx}=2x


cosydy+2dy=2xdxcos ydy+2dy=2xdx

siny+2y=x2+csiny+2y =x^2+c

siny+2yx2=csiny+2y -x^2=c



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment