Show complete solution. Use equation function.
1. Find the general solution of ada = 9x²dx- ydy.
2. Find the particular solution of y' = ycosx/1+2y² given y (x) = 1; y (0) = 1.
3. Find the general solution to the equation (cos y + 2) y' = 2x.
(1)."ada=9x^2dx-ydy"
Integrating both sides:
"\\int ada= \\int9x^2dx -\\int ydy"
"\\dfrac{a^2}{2}=9 \\times\\dfrac{x^3}{3} -\\dfrac{y^2}{2} +C"
"\\dfrac{a^2}{2}= 3{x^3} -\\dfrac{y^2}{2} +C"
(2). "\\dfrac{dy}{dx} =\\dfrac{y cosx}{1+2y^2}"
On variable separation we get:
"(\\dfrac{1}{y} +2y)dy=cos xdx"
Integrating both sides:
"\\int(\\dfrac{1}{y} +2y)dy= \\int cos xdx"
"log y +y^2=sinx +C"
Now it is given that:
y=1 when x=0, so put in above equation:
"log(1)+1=sin(o) +c"
"C=1"
So the solution is:
"logy+y^2=sinx +1 \\Rightarrow logy+y^2-sinx -1 =0"
(3)."(cosy+2) \\dfrac{dy}{dx}=2x"
"cos ydy+2dy=2xdx"
"siny+2y =x^2+c"
"siny+2y -x^2=c"
Comments
Leave a comment