xβy)y2dxβ=(yβx)x2dyβ=(x2+y2)zdzβ
xβy)y2dxβ=(yβx)x2dyβ
x2dx=βy2dy
x3+y3=C1β
xy2βy3βyx2+x3dxβdyβ=(x2+y2)zdzβ
(xβy)(x2+y2)d(xβy)β=(x2+y2)zdzβ
xβyd(xβy)β=zdzβ
ln(xβy)=ln(z)+ln(C2β)
C2β=zxβyβ
F(x3+y3,zxβyβ)=0
For xz=a3, y=0
x3=C1β
x2=a3C2β
The integral surface
x=C
Comments
Leave a comment