(π₯ β π¦)π¦2π + (π¦ β π₯)π₯2π = (π₯2 + π¦2)π§,
Find the Integra surface when π₯π§ = π3 (π > 0), π¦ = 0.
"\\frac{dx}{x-y)y^2}=\\frac{dy}{(y-x)x^2}=\\frac{dz}{(x^2+y^2)z}"
"\\frac{dx}{x-y)y^2}=\\frac{dy}{(y-x)x^2}"
"x^2dx=-y^2dy"
"x^3+y^3=C_1"
"\\frac{dx-dy}{xy^2-y^3-yx^2+x^3}=\\frac{dz}{(x^2+y^2)z}"
"\\frac{d(x-y)}{(x-y)(x^2+y^2)}=\\frac{dz}{(x^2+y^2)z}"
"\\frac{d(x-y)}{x-y}=\\frac{dz}{z}"
"ln(x-y)=ln(z)+ln(C_2)"
"C_2=\\frac{x-y}{z}"
"F(x^3+y^3,\\frac{x-y}{z})=0"
For xz=a3, y=0
"x^3=C_1"
"x^2=a^3C_2"
The integral surfaceΒ
x=C
Comments
Leave a comment