x−y)y2dx=(y−x)x2dy=(x2+y2)zdz
x−y)y2dx=(y−x)x2dy
x2dx=−y2dy
x3+y3=C1
xy2−y3−yx2+x3dx−dy=(x2+y2)zdz
(x−y)(x2+y2)d(x−y)=(x2+y2)zdz
x−yd(x−y)=zdz
ln(x−y)=ln(z)+ln(C2)
C2=zx−y
F(x3+y3,zx−y)=0
For xz=a3, y=0
x3=C1
x2=a3C2
The integral surface
x=C
Comments