Question #200487

Solve dy/dx-4y=2x^2 using the method exploit the superstition.


1
Expert's answer
2022-02-01T10:53:34-0500
y=uvy=uv

y=uv+uvy'=u'v+uv'

Substitute


uv+uv4uv=2x2u'v+uv'-4uv=2x^2

uv+v(u4u)=2x2uv'+v(u'-4u)=2x^2

Put the vv  term equal to zero


u4u=0u'-4u=0

duu=4dx\dfrac{du}{u}=4dx

Integrate


duu=4dx\int \dfrac{du}{u}=\int4dx


u=Ce4xu=Ce^{4x}

Then


Ce4xv=2x2Ce^{4x}v'=2x^2

dv=2Cx2e4xdxdv=\dfrac{2}{C}x^2 e^{-4x}dx

Integrate


dv=2Cx2e4xdx\int dv=\int\dfrac{2}{C}x^2 e^{-4x}dx

v=12Cx2e4x14Cxe4x116Ce4x+C1v=-\dfrac{1}{2C}x^2e^{-4x}-\dfrac{1}{4C}xe^{-4x}-\dfrac{1}{16C}e^{-4x}+C_1

y=12x214x116+C2e4xy=-\dfrac{1}{2}x^2-\dfrac{1}{4}x-\dfrac{1}{16}+C_2e^{4x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS