Solve dy/dx-4y=2x^2 using the method exploit the superstition.
"y'=u'v+uv'"
Substitute
"uv'+v(u'-4u)=2x^2"
Put the "v" term equal to zero
"\\dfrac{du}{u}=4dx"
Integrate
Then
"dv=\\dfrac{2}{C}x^2 e^{-4x}dx"
Integrate
"v=-\\dfrac{1}{2C}x^2e^{-4x}-\\dfrac{1}{4C}xe^{-4x}-\\dfrac{1}{16C}e^{-4x}+C_1"
"y=-\\dfrac{1}{2}x^2-\\dfrac{1}{4}x-\\dfrac{1}{16}+C_2e^{4x}"
Comments
Leave a comment