The displacementy(x,t)of the point of the stringat a distancexfrom the left end0at timetis given by the equation∂t2∂2y=a2∂x2∂2ySince the ends of the stringx=0andx=lare fixed,they do not undergo any displacement at any time.Therefore,y(0,t)=0fort≥0andy(l,t)=0fort≥0Since the string is released from rest initially,that is, att=0,the initial velocity of every pointof the string in they−direction is zero.Hence,∂t∂y(x,0)=0,for0≤x≤l∂t2∂2y=a2∂x2∂2ySolving the PDE by Seperation of Variables,Lety=X(x)T(t)∂x∂y=X′(x)T(t)∂x2∂2y=X′′(x)T(t)∂t∂y=X(x)T′(t)∂t2∂2y=X(x)T′′(t)X(x)T′′(t)=a2X′′(x)T(t)X(x)X′′(x)=a2T(t)T′′(t)=K2X(x)X′′(x)=K2X′′(x)−K2X(x)=0Solution ofX(x)isX(x)=C1cos(Kx)+C2sin(Kx)a2T(t)T′′(t)=K2T′′(t)−a2K2T(t)=0T(t)=C3cos(aKt)+C4sin(aKt)Thus,y(x,t)=(C1cos(Kx)+C2sin(Kx))(C3cos(aKt)+C4sin(aKt))By initial condition,∂t∂y(x,0)=0∂t∂y=(C1cos(Kx)+C2sin(Kx))(−C3aKsin(aKt)+C4aKcos(aKt))∂t∂y(x,0)=C4aK(C1cos(Kx)+C2sin(Kx))=0⟹C4=0.By the initial conditiony(0,t)=0y(x,t)=(C1cos(Kx)+C2sin(Kx))(C3cos(aKt)+C4sin(aKt))=0y(0,t)=C1(C3cos(aKt)+C4sin(aKt))=0⟹C1=0∴y(x,t)=C2sin(Kx)C3cos(aKt)By the initial conditiony(l,t)=0y(l,t)=C2sin(Kl)C3cos(aKt)=0⟹sin(Kl)=0sin(Kl)=sin(nπ)forn≥1K=lnπ∴y(x,t)=C2C3sin(lanπx)cos(lanπt)=λsin(lanπx)cos(lanπt)The general solution is thus,y(x,t)=n=1∑∞λnsin(lanπx)cos(lanπt)Where,λncan be related to the Fouriercoefficients by incorporating the initial conditions.y(x,0)=n=1∑∞λnsin(lanπx)cos(lanπ×0)=n=1∑∞λnsin(lanπx)By Fourier’s Half-range sine series, we deriveλnλn=l2a∫0aly(x,0)sin(lanπx)dx
Comments
Leave a comment