A string is stretched and fastened to two points apart. Motion is started by displacing the string in the form from which it is released at a time , the initial velocity is zero. To find the deflection
"\\displaystyle\n\\textsf{The displacement}\\,\\, y(x,t) \\,\\, \\textsf{of the point of the string}\\\\\n\\textsf{at a distance}\\,\\, x \\,\\, \\textsf{from the left end}\\,\\, 0\\,\\, \\textsf{at time}\\,\\, t \\\\\n\\textsf{is given by the equation}\\\\\n\n\\frac{\\partial^2 y}{\\partial t^2} = a^2\\frac{\\partial^2 y}{\\partial x^2}\\\\\n\n\\textsf{Since the ends of the string}\\,\\, x=0 \\,\\, \\textsf{and}\\,\\, x = l \\,\\, \\textsf{are fixed,}\\\\\n\\textsf{they do not undergo any displacement at any time.}\\\\\n\n\\textsf{Therefore,}\ny(0,t) = 0 \\,\\, \\textsf{for}\\,\\, t \\geq 0 \\,\\, \\textsf{and} \\,\\, y(l,t) = 0 \\,\\, \\textsf{for}\\,\\, t \\geq 0\\\\\n\n\\textsf{Since the string is released from rest initially,}\n\\textsf{that is, at}\\,\\, t=0, \\,\\, \\textsf{the initial velocity of every point}\\\\\n\\textsf{of the string in the}\\,\\, y-\\textsf{direction is zero.}\\\\\n\n\\textsf{Hence,} \\frac{\\partial y}{\\partial t}(x,0) = 0, for 0 \\leq x \\leq l\\\\\n\n\\frac{\\partial^2 y}{\\partial t^2} = a^2\\frac{\\partial^2 y}{\\partial x^2} \\\\\n\n\\textsf{Solving the PDE by Seperation of Variables,}\\\\\n\n\\textsf{Let}\\,\\, y = X(x)T(t)\\\\\n\n\\frac{\\partial y}{\\partial x} = X'(x)T(t)\\\\\n\\frac{\\partial^2 y}{\\partial x^2} = X''(x)T(t)\\\\\n\\frac{\\partial y}{\\partial t} = X(x)T'(t)\\\\\n\\frac{\\partial^2 y}{\\partial t^2} = X(x)T''(t)\\\\\n\nX(x)T''(t) = a^2X''(x)T(t)\\\\\n\n\\frac{X''(x)}{X(x)} = \\frac{T''(t)}{a^2T(t)} = K^2\\\\\n\n\\frac{X''(x)}{X(x)} = K^2\\\\\n\nX''(x) - K^2X(x) = 0\\\\\n\n\\textsf{Solution of}\\,\\, X(x)\\,\\, \\textsf{is}\\\\\n\nX(x) = C_1\\cos(Kx) + C_2\\sin(Kx)\\\\\n\n\\frac{T''(t)}{a^2T(t)} = K^2\\\\\n\nT''(t) - a^2 K^2T(t) = 0\\\\\n\nT(t) = C_3\\cos(aKt) + C_4\\sin(aKt)\\\\\n\n\\textsf{Thus,}\\,\\,y(x,t) = \\left(C_1\\cos(Kx) + C_2\\sin(Kx)\\right)\\left(C_3\\cos(aKt) + C_4\\sin(aKt)\\right)\\\\\n\n\\textsf{By initial condition,}\\,\\,\\frac{\\partial y}{\\partial t}(x,0) = 0\\\\\n\n\\frac{\\partial y}{\\partial t} = \\left(C_1\\cos(Kx) + C_2\\sin(Kx)\\right)\\left(-C_3aK\\sin(aKt) + C_4aK\\cos(aKt)\\right)\\\\\n\n\\frac{\\partial y}{\\partial t}(x,0) = C_4aK\\left(C_1\\cos(Kx) + C_2\\sin(Kx)\\right) = 0\\\\\n\n\\implies C_4 = 0.\\\\\n\n\\textsf{By the initial condition}\\,\\, y(0,t) = 0\\\\\n\ny(x,t) = \\left(C_1\\cos(Kx) + C_2\\sin(Kx)\\right)\\left(C_3\\cos(aKt) + C_4\\sin(aKt)\\right) = 0\\\\\n\ny(0,t) = C_1\\left(C_3\\cos(aKt) + C_4\\sin(aKt)\\right) = 0\\\\\n\n\\implies C_1 = 0\\\\\n\n\\therefore y(x,t) = C_2\\sin(Kx)C_3\\cos(aKt)\\\\\n\n\\textsf{By the initial condition}\\,\\, y(l,t) = 0\\\\\n\ny(l,t) = C_2\\sin(Kl)C_3\\cos(aKt) = 0\\\\\n\n\\implies \\sin(Kl) = 0\\\\\n\n\\sin(Kl) = \\sin(n\\pi)\\hspace{1cm} \\,\\, \\textsf{for}\\,\\, n \\geq 1\\\\\n\nK = \\frac{n\\pi}{l}\\\\\n\n\\therefore y(x,t) = C_2 C_3\\sin\\left(\\frac{an\\pi x}{l}\\right)\\cos\\left(\\frac{an\\pi t}{l}\\right) = \\lambda\\sin\\left(\\frac{an\\pi x}{l}\\right)\\cos\\left(\\frac{an\\pi t}{l}\\right)\\\\\n\n\\textsf{The general solution is thus,}\\\\\ny(x, t) = \\sum_{n=1}^{\\infty} \\lambda_n \\sin\\left(\\frac{an\\pi x}{l}\\right)\\cos\\left(\\frac{an\\pi t}{l}\\right)\\\\\n\n\\textsf{Where,}\\,\\, \\lambda_n \\,\\, \\textsf{can be related to the Fourier}\n\\\\ \\textsf{coefficients by incorporating the initial conditions.}\\\\\n\n\ny(x, 0) = \\sum_{n=1}^{\\infty} \\lambda_n \\sin\\left(\\frac{an\\pi x}{l}\\right)\\cos\\left(\\frac{an\\pi \\times 0}{l}\\right) = \\sum_{n=1}^{\\infty} \\lambda_n \\sin\\left(\\frac{an\\pi x}{l}\\right)\\\\\n\n\\textsf{By Fourier's Half-range sine series, we derive}\\,\\,\\lambda_n\\\\\n\n\\lambda_n = \\frac{2a}{l}\\int_0^{\\frac{l}{a}} y(x,0) \\sin\\left(\\frac{an\\pi x}{l}\\right) \\mathrm{d}x"
Comments
Leave a comment