Answer to Question #202053 in Differential Equations for Shrenik Gadiya

Question #202053

A string is stretched and fastened to two points  apart. Motion is started by displacing the string in the form  from which it is released at a time , the initial velocity is zero. To find the deflection


1
Expert's answer
2021-06-06T15:54:16-0400

The displacement  y(x,t)  of the point of the stringat a distance  x  from the left end  0  at time  tis given by the equation2yt2=a22yx2Since the ends of the string  x=0  and  x=l  are fixed,they do not undergo any displacement at any time.Therefore,y(0,t)=0  for  t0  and  y(l,t)=0  for  t0Since the string is released from rest initially,that is, at  t=0,  the initial velocity of every pointof the string in the  ydirection is zero.Hence,yt(x,0)=0,for0xl2yt2=a22yx2Solving the PDE by Seperation of Variables,Let  y=X(x)T(t)yx=X(x)T(t)2yx2=X(x)T(t)yt=X(x)T(t)2yt2=X(x)T(t)X(x)T(t)=a2X(x)T(t)X(x)X(x)=T(t)a2T(t)=K2X(x)X(x)=K2X(x)K2X(x)=0Solution of  X(x)  isX(x)=C1cos(Kx)+C2sin(Kx)T(t)a2T(t)=K2T(t)a2K2T(t)=0T(t)=C3cos(aKt)+C4sin(aKt)Thus,  y(x,t)=(C1cos(Kx)+C2sin(Kx))(C3cos(aKt)+C4sin(aKt))By initial condition,  yt(x,0)=0yt=(C1cos(Kx)+C2sin(Kx))(C3aKsin(aKt)+C4aKcos(aKt))yt(x,0)=C4aK(C1cos(Kx)+C2sin(Kx))=0    C4=0.By the initial condition  y(0,t)=0y(x,t)=(C1cos(Kx)+C2sin(Kx))(C3cos(aKt)+C4sin(aKt))=0y(0,t)=C1(C3cos(aKt)+C4sin(aKt))=0    C1=0y(x,t)=C2sin(Kx)C3cos(aKt)By the initial condition  y(l,t)=0y(l,t)=C2sin(Kl)C3cos(aKt)=0    sin(Kl)=0sin(Kl)=sin(nπ)  for  n1K=nπly(x,t)=C2C3sin(anπxl)cos(anπtl)=λsin(anπxl)cos(anπtl)The general solution is thus,y(x,t)=n=1λnsin(anπxl)cos(anπtl)Where,  λn  can be related to the Fouriercoefficients by incorporating the initial conditions.y(x,0)=n=1λnsin(anπxl)cos(anπ×0l)=n=1λnsin(anπxl)By Fourier’s Half-range sine series, we derive  λnλn=2al0lay(x,0)sin(anπxl)dx\displaystyle \textsf{The displacement}\,\, y(x,t) \,\, \textsf{of the point of the string}\\ \textsf{at a distance}\,\, x \,\, \textsf{from the left end}\,\, 0\,\, \textsf{at time}\,\, t \\ \textsf{is given by the equation}\\ \frac{\partial^2 y}{\partial t^2} = a^2\frac{\partial^2 y}{\partial x^2}\\ \textsf{Since the ends of the string}\,\, x=0 \,\, \textsf{and}\,\, x = l \,\, \textsf{are fixed,}\\ \textsf{they do not undergo any displacement at any time.}\\ \textsf{Therefore,} y(0,t) = 0 \,\, \textsf{for}\,\, t \geq 0 \,\, \textsf{and} \,\, y(l,t) = 0 \,\, \textsf{for}\,\, t \geq 0\\ \textsf{Since the string is released from rest initially,} \textsf{that is, at}\,\, t=0, \,\, \textsf{the initial velocity of every point}\\ \textsf{of the string in the}\,\, y-\textsf{direction is zero.}\\ \textsf{Hence,} \frac{\partial y}{\partial t}(x,0) = 0, for 0 \leq x \leq l\\ \frac{\partial^2 y}{\partial t^2} = a^2\frac{\partial^2 y}{\partial x^2} \\ \textsf{Solving the PDE by Seperation of Variables,}\\ \textsf{Let}\,\, y = X(x)T(t)\\ \frac{\partial y}{\partial x} = X'(x)T(t)\\ \frac{\partial^2 y}{\partial x^2} = X''(x)T(t)\\ \frac{\partial y}{\partial t} = X(x)T'(t)\\ \frac{\partial^2 y}{\partial t^2} = X(x)T''(t)\\ X(x)T''(t) = a^2X''(x)T(t)\\ \frac{X''(x)}{X(x)} = \frac{T''(t)}{a^2T(t)} = K^2\\ \frac{X''(x)}{X(x)} = K^2\\ X''(x) - K^2X(x) = 0\\ \textsf{Solution of}\,\, X(x)\,\, \textsf{is}\\ X(x) = C_1\cos(Kx) + C_2\sin(Kx)\\ \frac{T''(t)}{a^2T(t)} = K^2\\ T''(t) - a^2 K^2T(t) = 0\\ T(t) = C_3\cos(aKt) + C_4\sin(aKt)\\ \textsf{Thus,}\,\,y(x,t) = \left(C_1\cos(Kx) + C_2\sin(Kx)\right)\left(C_3\cos(aKt) + C_4\sin(aKt)\right)\\ \textsf{By initial condition,}\,\,\frac{\partial y}{\partial t}(x,0) = 0\\ \frac{\partial y}{\partial t} = \left(C_1\cos(Kx) + C_2\sin(Kx)\right)\left(-C_3aK\sin(aKt) + C_4aK\cos(aKt)\right)\\ \frac{\partial y}{\partial t}(x,0) = C_4aK\left(C_1\cos(Kx) + C_2\sin(Kx)\right) = 0\\ \implies C_4 = 0.\\ \textsf{By the initial condition}\,\, y(0,t) = 0\\ y(x,t) = \left(C_1\cos(Kx) + C_2\sin(Kx)\right)\left(C_3\cos(aKt) + C_4\sin(aKt)\right) = 0\\ y(0,t) = C_1\left(C_3\cos(aKt) + C_4\sin(aKt)\right) = 0\\ \implies C_1 = 0\\ \therefore y(x,t) = C_2\sin(Kx)C_3\cos(aKt)\\ \textsf{By the initial condition}\,\, y(l,t) = 0\\ y(l,t) = C_2\sin(Kl)C_3\cos(aKt) = 0\\ \implies \sin(Kl) = 0\\ \sin(Kl) = \sin(n\pi)\hspace{1cm} \,\, \textsf{for}\,\, n \geq 1\\ K = \frac{n\pi}{l}\\ \therefore y(x,t) = C_2 C_3\sin\left(\frac{an\pi x}{l}\right)\cos\left(\frac{an\pi t}{l}\right) = \lambda\sin\left(\frac{an\pi x}{l}\right)\cos\left(\frac{an\pi t}{l}\right)\\ \textsf{The general solution is thus,}\\ y(x, t) = \sum_{n=1}^{\infty} \lambda_n \sin\left(\frac{an\pi x}{l}\right)\cos\left(\frac{an\pi t}{l}\right)\\ \textsf{Where,}\,\, \lambda_n \,\, \textsf{can be related to the Fourier} \\ \textsf{coefficients by incorporating the initial conditions.}\\ y(x, 0) = \sum_{n=1}^{\infty} \lambda_n \sin\left(\frac{an\pi x}{l}\right)\cos\left(\frac{an\pi \times 0}{l}\right) = \sum_{n=1}^{\infty} \lambda_n \sin\left(\frac{an\pi x}{l}\right)\\ \textsf{By Fourier's Half-range sine series, we derive}\,\,\lambda_n\\ \lambda_n = \frac{2a}{l}\int_0^{\frac{l}{a}} y(x,0) \sin\left(\frac{an\pi x}{l}\right) \mathrm{d}x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment