z= xy+f(x^2+y^2+z^2)
"\\displaystyle\nz = xy + f(x^2 + y^2 + z^2)\\\\\n\n\\frac{\\partial z}{\\partial x} = y + 2xf(x^2 + y^2 + z^2)\\\\\n\n\\frac{\\partial z}{\\partial y} = x + 2yf(x^2 + y^2 + z^2)\\\\\n\n\ny\\frac{\\partial z}{\\partial x} = y^2 + 2xyf(x^2 + y^2 + z^2)\\\\\n\nx\\frac{\\partial z}{\\partial y} = x^2 + 2xyf(x^2 + y^2 + z^2)\\\\\n\n\ny\\frac{\\partial z}{\\partial x} - x\\frac{\\partial z}{\\partial y} = y^2 - x^2"
Comments
Leave a comment