z= xy+f(x^2+y^2+z^2)
z=xy+f(x2+y2+z2)∂z∂x=y+2xf(x2+y2+z2)∂z∂y=x+2yf(x2+y2+z2)y∂z∂x=y2+2xyf(x2+y2+z2)x∂z∂y=x2+2xyf(x2+y2+z2)y∂z∂x−x∂z∂y=y2−x2\displaystyle z = xy + f(x^2 + y^2 + z^2)\\ \frac{\partial z}{\partial x} = y + 2xf(x^2 + y^2 + z^2)\\ \frac{\partial z}{\partial y} = x + 2yf(x^2 + y^2 + z^2)\\ y\frac{\partial z}{\partial x} = y^2 + 2xyf(x^2 + y^2 + z^2)\\ x\frac{\partial z}{\partial y} = x^2 + 2xyf(x^2 + y^2 + z^2)\\ y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = y^2 - x^2z=xy+f(x2+y2+z2)∂x∂z=y+2xf(x2+y2+z2)∂y∂z=x+2yf(x2+y2+z2)y∂x∂z=y2+2xyf(x2+y2+z2)x∂y∂z=x2+2xyf(x2+y2+z2)y∂x∂z−x∂y∂z=y2−x2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment