Formulate a differential equation whose general solution is z(t)=A sin t-B cos t.
"Answer: z''+z=0"
"Check: \\\\\nz'' + z = z''(t) + z(t) = (A \\sin(t) - B\\cos(t))'' + A\\sin(t) - B\\cos(t) = \\\\\n= (A\\cos(t) + B\\sin(t))' + A\\sin(t) - B\\cos(t) = \\\\\n= -A\\sin(t) + B\\cos(t) + A\\sin(t) - B\\cos(t) = 0"
If you decide strictly (optional):
"\\begin{vmatrix}\n z(t) & z(t)' & z(t)'' \\\\\n sin(t) & cos(t) & -sin(t) \\\\\n -cos(t) & sin(t) & cos(t)\n\\end{vmatrix} = 0 \\\\\n\\Rightarrow z cos^2(t) + z'sin(t)cos(t) + z''sin^2(t) + z''cos^2(t) + zsin^2(t) - z'sin(t)cos(t) = 0\\\\\n\\Rightarrow z (cos^2(t) + sin^2(t)) + z''(sin^2(t) + cos^2(t)) = 0 \\;\\; \\;\\; (sin^2(t) + cos^2(t) = 1)\\\\\n\\Rightarrow z + z'' = 0"
Comments
Leave a comment