Answer to Question #182086 in Differential Equations for Gordian

Question #182086

Formulate a differential equation whose general solution is z(t)=A sin t-B cos t.


1
Expert's answer
2021-04-29T14:51:24-0400

Answer:z+z=0Answer: z''+z=0

Check:z+z=z(t)+z(t)=(Asin(t)Bcos(t))+Asin(t)Bcos(t)==(Acos(t)+Bsin(t))+Asin(t)Bcos(t)==Asin(t)+Bcos(t)+Asin(t)Bcos(t)=0Check: \\ z'' + z = z''(t) + z(t) = (A \sin(t) - B\cos(t))'' + A\sin(t) - B\cos(t) = \\ = (A\cos(t) + B\sin(t))' + A\sin(t) - B\cos(t) = \\ = -A\sin(t) + B\cos(t) + A\sin(t) - B\cos(t) = 0


If you decide strictly (optional):

z(t)z(t)z(t)sin(t)cos(t)sin(t)cos(t)sin(t)cos(t)=0zcos2(t)+zsin(t)cos(t)+zsin2(t)+zcos2(t)+zsin2(t)zsin(t)cos(t)=0z(cos2(t)+sin2(t))+z(sin2(t)+cos2(t))=0        (sin2(t)+cos2(t)=1)z+z=0\begin{vmatrix} z(t) & z(t)' & z(t)'' \\ sin(t) & cos(t) & -sin(t) \\ -cos(t) & sin(t) & cos(t) \end{vmatrix} = 0 \\ \Rightarrow z cos^2(t) + z'sin(t)cos(t) + z''sin^2(t) + z''cos^2(t) + zsin^2(t) - z'sin(t)cos(t) = 0\\ \Rightarrow z (cos^2(t) + sin^2(t)) + z''(sin^2(t) + cos^2(t)) = 0 \;\; \;\; (sin^2(t) + cos^2(t) = 1)\\ \Rightarrow z + z'' = 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment