A n s w e r : z ′ ′ + z = 0 Answer: z''+z=0 A n s w er : z ′′ + z = 0
C h e c k : z ′ ′ + z = z ′ ′ ( t ) + z ( t ) = ( A sin ( t ) − B cos ( t ) ) ′ ′ + A sin ( t ) − B cos ( t ) = = ( A cos ( t ) + B sin ( t ) ) ′ + A sin ( t ) − B cos ( t ) = = − A sin ( t ) + B cos ( t ) + A sin ( t ) − B cos ( t ) = 0 Check: \\
z'' + z = z''(t) + z(t) = (A \sin(t) - B\cos(t))'' + A\sin(t) - B\cos(t) = \\
= (A\cos(t) + B\sin(t))' + A\sin(t) - B\cos(t) = \\
= -A\sin(t) + B\cos(t) + A\sin(t) - B\cos(t) = 0 C h ec k : z ′′ + z = z ′′ ( t ) + z ( t ) = ( A sin ( t ) − B cos ( t ) ) ′′ + A sin ( t ) − B cos ( t ) = = ( A cos ( t ) + B sin ( t ) ) ′ + A sin ( t ) − B cos ( t ) = = − A sin ( t ) + B cos ( t ) + A sin ( t ) − B cos ( t ) = 0
If you decide strictly (optional):
∣ z ( t ) z ( t ) ′ z ( t ) ′ ′ s i n ( t ) c o s ( t ) − s i n ( t ) − c o s ( t ) s i n ( t ) c o s ( t ) ∣ = 0 ⇒ z c o s 2 ( t ) + z ′ s i n ( t ) c o s ( t ) + z ′ ′ s i n 2 ( t ) + z ′ ′ c o s 2 ( t ) + z s i n 2 ( t ) − z ′ s i n ( t ) c o s ( t ) = 0 ⇒ z ( c o s 2 ( t ) + s i n 2 ( t ) ) + z ′ ′ ( s i n 2 ( t ) + c o s 2 ( t ) ) = 0 ( s i n 2 ( t ) + c o s 2 ( t ) = 1 ) ⇒ z + z ′ ′ = 0 \begin{vmatrix}
z(t) & z(t)' & z(t)'' \\
sin(t) & cos(t) & -sin(t) \\
-cos(t) & sin(t) & cos(t)
\end{vmatrix} = 0 \\
\Rightarrow z cos^2(t) + z'sin(t)cos(t) + z''sin^2(t) + z''cos^2(t) + zsin^2(t) - z'sin(t)cos(t) = 0\\
\Rightarrow z (cos^2(t) + sin^2(t)) + z''(sin^2(t) + cos^2(t)) = 0 \;\; \;\; (sin^2(t) + cos^2(t) = 1)\\
\Rightarrow z + z'' = 0 ∣ ∣ z ( t ) s in ( t ) − cos ( t ) z ( t ) ′ cos ( t ) s in ( t ) z ( t ) ′′ − s in ( t ) cos ( t ) ∣ ∣ = 0 ⇒ zco s 2 ( t ) + z ′ s in ( t ) cos ( t ) + z ′′ s i n 2 ( t ) + z ′′ co s 2 ( t ) + zs i n 2 ( t ) − z ′ s in ( t ) cos ( t ) = 0 ⇒ z ( co s 2 ( t ) + s i n 2 ( t )) + z ′′ ( s i n 2 ( t ) + co s 2 ( t )) = 0 ( s i n 2 ( t ) + co s 2 ( t ) = 1 ) ⇒ z + z ′′ = 0
Comments