Answer:z′′+z=0
Check:z′′+z=z′′(t)+z(t)=(Asin(t)−Bcos(t))′′+Asin(t)−Bcos(t)==(Acos(t)+Bsin(t))′+Asin(t)−Bcos(t)==−Asin(t)+Bcos(t)+Asin(t)−Bcos(t)=0
If you decide strictly (optional):
∣∣z(t)sin(t)−cos(t)z(t)′cos(t)sin(t)z(t)′′−sin(t)cos(t)∣∣=0⇒zcos2(t)+z′sin(t)cos(t)+z′′sin2(t)+z′′cos2(t)+zsin2(t)−z′sin(t)cos(t)=0⇒z(cos2(t)+sin2(t))+z′′(sin2(t)+cos2(t))=0(sin2(t)+cos2(t)=1)⇒z+z′′=0
Comments
Leave a comment