Question #161506

dx/x(y2-z2)=dy/-y(z2+x2)=dz/z(x2+y2)


1
Expert's answer
2021-02-23T08:17:12-0500

dxx(y2z2)=dyy(z2+x2)=dzz(x2+y2)\frac{dx}{x(y^2-z^2)}=\frac{dy}{-y(z^2+x^2)}=\frac{dz}{z(x^2+y^2)}

Solution:

Let's make an integral combination using the property of equal fraction:

xdx+ydyx2(y2z2)y2(z2+x2)=dzz(x2+y2)\frac{xdx+ydy}{x^2(y^2-z^2)-y^2(z^2+x^2)}=\frac{dz}{z(x^2+y^2)}

12d(x2+y2)z2(x2+y2)=dzz(x2+y2)\frac{\frac12d(x^2+y^2)}{-z^2(x^2+y^2)}=\frac{dz}{z(x^2+y^2)}

12d(x2+y2)=zdz\frac12d(x^2+y^2)=-zdz

12(x2+y2)=z22+C\frac12(x^2+y^2)=-\frac{z^2}{2}+C

x2+y2+z2=C1x^2+y^2+z^2=C_1

ϕ1(x,y,z)=x2+y2+z2=C1\phi_1(x,y,z)=x^2+y^2+z^2=C_1 - first integral of the system.

Another integral combination:

ydxxdyxy(y2z2)+yx(z2+x2)=dzz(x2+y2)\frac{ydx-xdy}{xy(y^2-z^2)+yx(z^2+x^2)}=\frac{dz}{z(x^2+y^2)}

y2dxyxy(x2+y2)=dzz(x2+y2)\frac{y^2d\frac{x}{y}}{xy(x^2+y^2)}=\frac{dz}{z(x^2+y^2)}

dxyxy=dzz\frac{d\frac{x}{y}}{\frac{x}{y}}=\frac{dz}{z}

lnxy=lnz+lnC2\ln|\frac{x}{y}|=\ln|z|+\ln{C_2}

xzy=C2\frac{x}{zy}=C_2

ϕ2(x,y,z)=xzy=C2\phi_2(x,y,z)=\frac{x}{zy}=C_2 - another integral of the system.

Since

rank(ϕ1xϕ1yϕ1zϕ2xϕ2yϕ2z)=(2x2y2z1zyxzy2xyz2)=2\begin{pmatrix} \frac{\partial\phi_1}{\partial x} & \frac{\partial\phi_1}{\partial y} & \frac{\partial\phi_1}{\partial z} \\ \frac{\partial\phi_2}{\partial x} & \frac{\partial\phi_2}{\partial y} & \frac{\partial\phi_2}{\partial z} \end{pmatrix}= \begin{pmatrix} 2x & 2y & 2z \\ \frac{1}{zy} & - \frac{x}{zy^2} & -\frac{x}{yz^2} \end{pmatrix}=2 ,

then ϕ1\phi_1 and ϕ2\phi_2 are independent.

General solution:

u=Φ(ϕ1,ϕ2)=Φ(x2+y2+z2,xyz)u=\varPhi(\phi_1, \phi_2)=\varPhi(x^2+y^2+z^2, \frac{x}{yz}) , where Φ\varPhi is any continues differentiable function of arguments ϕ1\phi_1 and ϕ2\phi_2 .

Answer: u=Φ(x2+y2+z2,xyz)u=\varPhi(x^2+y^2+z^2, \frac{x}{yz}) .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS