x(y2−z2)dx=−y(z2+x2)dy=z(x2+y2)dz
Solution:
Let's make an integral combination using the property of equal fraction:
x2(y2−z2)−y2(z2+x2)xdx+ydy=z(x2+y2)dz
−z2(x2+y2)21d(x2+y2)=z(x2+y2)dz
21d(x2+y2)=−zdz
21(x2+y2)=−2z2+C
x2+y2+z2=C1
ϕ1(x,y,z)=x2+y2+z2=C1 - first integral of the system.
Another integral combination:
xy(y2−z2)+yx(z2+x2)ydx−xdy=z(x2+y2)dz
xy(x2+y2)y2dyx=z(x2+y2)dz
yxdyx=zdz
ln∣yx∣=ln∣z∣+lnC2
zyx=C2
ϕ2(x,y,z)=zyx=C2 - another integral of the system.
Since
rank(∂x∂ϕ1∂x∂ϕ2∂y∂ϕ1∂y∂ϕ2∂z∂ϕ1∂z∂ϕ2)=(2xzy12y−zy2x2z−yz2x)=2 ,
then ϕ1 and ϕ2 are independent.
General solution:
u=Φ(ϕ1,ϕ2)=Φ(x2+y2+z2,yzx) , where Φ is any continues differentiable function of arguments ϕ1 and ϕ2 .
Answer: u=Φ(x2+y2+z2,yzx) .
Comments