dx/x(y2-z2)=dy/-y(z2+x2)=dz/z(x2+y2)
"\\frac{dx}{x(y^2-z^2)}=\\frac{dy}{-y(z^2+x^2)}=\\frac{dz}{z(x^2+y^2)}"
Solution:
Let's make an integral combination using the property of equal fraction:
"\\frac{xdx+ydy}{x^2(y^2-z^2)-y^2(z^2+x^2)}=\\frac{dz}{z(x^2+y^2)}"
"\\frac{\\frac12d(x^2+y^2)}{-z^2(x^2+y^2)}=\\frac{dz}{z(x^2+y^2)}"
"\\frac12d(x^2+y^2)=-zdz"
"\\frac12(x^2+y^2)=-\\frac{z^2}{2}+C"
"x^2+y^2+z^2=C_1"
"\\phi_1(x,y,z)=x^2+y^2+z^2=C_1" - first integral of the system.
Another integral combination:
"\\frac{ydx-xdy}{xy(y^2-z^2)+yx(z^2+x^2)}=\\frac{dz}{z(x^2+y^2)}"
"\\frac{y^2d\\frac{x}{y}}{xy(x^2+y^2)}=\\frac{dz}{z(x^2+y^2)}"
"\\frac{d\\frac{x}{y}}{\\frac{x}{y}}=\\frac{dz}{z}"
"\\ln|\\frac{x}{y}|=\\ln|z|+\\ln{C_2}"
"\\frac{x}{zy}=C_2"
"\\phi_2(x,y,z)=\\frac{x}{zy}=C_2" - another integral of the system.
Since
rank"\\begin{pmatrix}\n \\frac{\\partial\\phi_1}{\\partial x} & \\frac{\\partial\\phi_1}{\\partial y} & \\frac{\\partial\\phi_1}{\\partial z} \\\\\n \\frac{\\partial\\phi_2}{\\partial x} & \\frac{\\partial\\phi_2}{\\partial y} & \\frac{\\partial\\phi_2}{\\partial z}\n\\end{pmatrix}=\n\\begin{pmatrix}\n 2x & 2y & 2z \\\\\n \\frac{1}{zy} & - \\frac{x}{zy^2} & -\\frac{x}{yz^2}\n\\end{pmatrix}=2" ,
then "\\phi_1" and "\\phi_2" are independent.
General solution:
"u=\\varPhi(\\phi_1, \\phi_2)=\\varPhi(x^2+y^2+z^2, \\frac{x}{yz})" , where "\\varPhi" is any continues differentiable function of arguments "\\phi_1" and "\\phi_2" .
Answer: "u=\\varPhi(x^2+y^2+z^2, \\frac{x}{yz})" .
Comments
Leave a comment