Question #161123

Find the solution of the following couple of different differential equations x^'=4x-y and y^'=-4x+4y when t=0 ,x(0)=1 and y(0)=1


1
Expert's answer
2021-02-23T09:05:50-0500

{x=4xyy=4x+4y\begin{cases} x^\prime =4x-y \\ y^\prime=-4x+4y \end{cases} and x(0)=y(0)=1x(0)=y(0)=1 .


From the first equation we get x=4xy=4x(4x+4y)=4x+4x4y=4x+4x4(4xx)=4x+4x16x+4xx^{\prime \prime}=4x^\prime -y^\prime =4x^\prime -\left(-4x+4y \right)=4x^\prime +4x-4y=4x^\prime +4x-4(4x-x^\prime )=4x^\prime +4x-16x+4x^\prime


We have second order differential equation x8x+12x=0x^{\prime \prime}-8x^\prime +12x=0 .

The characteristic equation is λ28λ+12=0\lambda ^2-8\lambda +12=0 .

The roots are \lambda _1=2,\ λ2=6\lambda _2=6 .

The general solution is x(t)=c1e2t+c2e6tx(t)=c_1e^{2t}+c_2e^{6t} .

Then we can find y=4xx=4(c1e2t+c2e6t)(2c1e2t+6c2e6t)=2c1e2t2c2e6ty=4x-x^\prime =4\left( c_1e^{2t}+c_2e^{6t} \right) -\left(2c_1e^{2t}+6c_2e^{6t}\right)= 2c_1e^{2t}-2c_2e^{6t} .

Using x(0)=y(0)=1x(0)=y(0)=1 , we get a system:

{1=c1+c21=2c12c2\begin{cases} 1=c_1+c_2 \\ 1=2c_1-2c_2 \end{cases} {2=2c1+2c21=2c12c2\begin{cases} 2=2c_1+2c_2 \\ 1=2c_1-2c_2 \end{cases} {c1=34c2=14\begin{cases} c_1=\tfrac{3}{4} \\ c_2=\tfrac{1}{4} \end{cases}


Answer: x(t)=14(3e2t+e6t),  y(t)=12(3e2te6t)x(t)=\tfrac{1}{4}\left(3e^{2t}+e^{6t}\right), \ \ y(t)=\tfrac{1}{2}\left(3e^{2t}-e^{6t}\right) .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS