Question #161018

2.2 Find the solution of the following couple of differential equations: x^ prime =4x-y and y^ prime =-4x+4y When t = 0, x(0) = 1 and y(0) = 1 .


1
Expert's answer
2021-02-24T07:36:07-0500

{dxdt=4xydydt=4x+4y\begin{cases} \frac{dx}{dt}=4x-y\\ \frac{dy}{dt}=-4x+4y \end{cases}


Characteristic equation:

4λ144λ=(4λ)24=\begin{vmatrix} 4-\lambda & -1\\ -4 & 4-\lambda \end{vmatrix}=(4-\lambda)^2-4=

=(4λ2)(4λ+2)=(2λ)(6λ)=(4-\lambda-2)(4-\lambda+2)=(2-\lambda)(6-\lambda)

Eigen values:

λ1=2\lambda_1=2

λ2=6\lambda_2=6

Then we find eigen vectors:


for λ1\lambda_1 :

(2142)(x01y01)=0\begin{pmatrix} 2 & -1\\ -4 & 2 \end{pmatrix} \begin{pmatrix} x_{01}\\ y_{01} \end{pmatrix}=0

x01=1x_{01}=1

y01=2y_{01}=2


for λ2\lambda_2 :

(2142)(x02y02)=0\begin{pmatrix} -2 & -1\\ -4 & -2 \end{pmatrix} \begin{pmatrix} x_{02}\\ y_{02} \end{pmatrix}=0

x02=1x_{02}=1

y02=2y_{02}=-2


Common solution:

(xy)=C1(12)e2t+C2(12)e6t\begin{pmatrix} x\\ y \end{pmatrix}=C_1 \begin{pmatrix} 1\\ 2 \end{pmatrix}*e^{2t}+C_2 \begin{pmatrix} 1\\ -2 \end{pmatrix}*e^{6t}


When t=0, x(0)=1 and y(0)=1, so

(11)=C1(12)+C2(12)\begin{pmatrix} 1\\ 1 \end{pmatrix}=C_1 \begin{pmatrix} 1\\ 2 \end{pmatrix}+C_2 \begin{pmatrix} 1\\ -2 \end{pmatrix}


Solution: C1=34C_1=\frac{3}{4} C2=14C_2=\frac{1}{4}


Solution of the system:

(xy)=34(12)e2t+14(12)e6t\begin{pmatrix} x\\ y \end{pmatrix}=\frac{3}{4} \begin{pmatrix} 1\\ 2 \end{pmatrix}*e^{2t}+\frac{1}{4} \begin{pmatrix} 1\\ -2 \end{pmatrix}*e^{6t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS