2.2 Find the solution of the following couple of differential equations: x^ prime =4x-y and y^ prime =-4x+4y When t = 0, x(0) = 1 and y(0) = 1 .
"\\begin{cases}\n\\frac{dx}{dt}=4x-y\\\\\n\\frac{dy}{dt}=-4x+4y\n\\end{cases}"
Characteristic equation:
"\\begin{vmatrix}\n4-\\lambda & -1\\\\\n-4 & 4-\\lambda\n\\end{vmatrix}=(4-\\lambda)^2-4="
"=(4-\\lambda-2)(4-\\lambda+2)=(2-\\lambda)(6-\\lambda)"
Eigen values:
"\\lambda_1=2"
"\\lambda_2=6"
Then we find eigen vectors:
for "\\lambda_1" :
"\\begin{pmatrix}\n2 & -1\\\\\n-4 & 2\n\\end{pmatrix}\n\\begin{pmatrix}\nx_{01}\\\\\ny_{01}\n\\end{pmatrix}=0"
"x_{01}=1"
"y_{01}=2"
for "\\lambda_2" :
"\\begin{pmatrix}\n-2 & -1\\\\\n-4 & -2\n\\end{pmatrix}\n\\begin{pmatrix}\nx_{02}\\\\\ny_{02}\n\\end{pmatrix}=0"
"x_{02}=1"
"y_{02}=-2"
Common solution:
"\\begin{pmatrix}\nx\\\\\ny\n\\end{pmatrix}=C_1\n\\begin{pmatrix}\n1\\\\\n2\n\\end{pmatrix}*e^{2t}+C_2\n\\begin{pmatrix}\n1\\\\\n-2\n\\end{pmatrix}*e^{6t}"
When t=0, x(0)=1 and y(0)=1, so
"\\begin{pmatrix}\n1\\\\\n1\n\\end{pmatrix}=C_1\n\\begin{pmatrix}\n1\\\\\n2\n\\end{pmatrix}+C_2\n\\begin{pmatrix}\n1\\\\\n-2\n\\end{pmatrix}"
Solution: "C_1=\\frac{3}{4}" "C_2=\\frac{1}{4}"
Solution of the system:
"\\begin{pmatrix}\nx\\\\\ny\n\\end{pmatrix}=\\frac{3}{4}\n\\begin{pmatrix}\n1\\\\\n2\n\\end{pmatrix}*e^{2t}+\\frac{1}{4}\n\\begin{pmatrix}\n1\\\\\n-2\n\\end{pmatrix}*e^{6t}"
Comments
Leave a comment