Question #152494
z(x+y)p+z(x-y)q=x²+y² where p=dz/dx
q=dz/dx (partial differentiation) (i couldn't find its symbol so used d only)
1
Expert's answer
2020-12-28T13:27:34-0500

P=z(x+y)=zx+zy

Q=z(x-y)=zx-zy

R=x2+y2

dxP=dyQ=dzR\frac{dx}{P}=\frac{dy}{Q}=\frac{dz}{R}

dxzx+zy=dyzxzy=dzx2+y2\frac{dx}{zx+zy}=\frac{dy}{zx-zy}=\frac{dz}{x^2+y^2}

Multiplyers: x,-y,-z

xdx-ydy-zdz=0

x22y22z22=C1\frac{x^2}{2}-\frac{y^2}{2}-\frac{z^2}{2}=C_1

Multiplyers: -x,y,z

-xdx+ydy+zdz=0

x22+y22+z22=C2\frac{-x^2}{2}+\frac{y^2}{2}+\frac{z^2}{2}=C_2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS