Let the equation of conduction of heat be,
dtdu=α2dx2d2u
The boundary conditions are
(i)u(0,t)=0,t≥0(ii)u(l,t)=0,t>0,(iii)u(x,0)=f(x)=ksin3(πl),0<x<ℓ
Taking fourier sine transform of above equation ,
∫0∞dtdusinwxdx=α2∫0∞dx2d2usinwxdx
⇒dtd∫0∞usinwxdx=α2[−ω2us]⇒dtdus=α2(−ω2us)⇒usdus=−α2ω2dt
Integrating both the sides and we get,
logus=−α2ω2t+logc⇒cus=e−α2ω2t⇒us=ce−α2ω2t −(1)
Given initial temprature is-
u(x,0)=sin3πl
Taking finite fourier sine transform-
us=∫0lsin3πlsin(lnπx)dx
⇒us=sin3πl∣cos(lnπx)∣0lnπl
⇒us=sin3πl(cosnπ−cos0)nπl
⇒us=sin3πl((−1)n−1)nπl −(2)
Comparing eqs.(1) and eqs.(2)--
we get
sin3πl((−1)n−1)nπl =ce−α2ω2t
from here we get ,
c=((−1)n−1)sin3πlnπleα2ω2t
Put this value in eqs.(1)-
⇒us=((−1)n−1)sin3πlnπleα2ω2te−α2ω2t
⇒us=((−1)n−1)sin3πlnπl
Taking Inverse fourier sine transform and we get the temprature as-
u=∫0∞((−1)n−1)sin3πlnπlsinwtdt
This is the required temprature distribution.
Comments