Question #152365
A uniform bar of length which heat flows is insulated at its sides . The ends kept at zero temperature . If the initial temperature at the interior points of the bar is given by k sin^ 3 ( pi x l ). find the temperature distribution in the bar after time ' t'
1
Expert's answer
2020-12-22T19:58:13-0500


Let the equation of conduction of heat be,

dudt=α2d2udx2\dfrac{du}{dt}=\alpha^2\dfrac{d^2u}{dx^2}


The boundary conditions are                             

(i)u(0,t)=0,t0(ii)u(l,t)=0,t>0,(iii)u(x,0)=f(x)=ksin3(πl),0<x<(i)u (0,t) = 0, t ≥ 0\\ (ii) u (l,t) = 0,t>0, \\ (iii) u (x,0) = f (x)=ksin^3(\pi l), 0 < x < ℓ


Taking fourier sine transform of above equation ,

0dudtsinwxdx=α20d2udx2sinwxdx\int_0^{\infty}\dfrac{du}{dt}sinwxdx=\alpha^2\int_0^{\infty}\dfrac{d^2u}{dx^2}sinwxdx


ddt0usinwxdx=α2[ω2us]dusdt=α2(ω2us)dusus=α2ω2dt\Rightarrow \dfrac{d}{dt}\int_0^{\infty}usinwxdx=\alpha^2[-\omega^2u_s]\\\Rightarrow \dfrac{du_s}{dt}=\alpha^2(-\omega^2u_s)\\\Rightarrow \dfrac{du_s}{u_s}=-\alpha^2\omega^2dt


Integrating both the sides and we get,

logus=α2ω2t+logcusc=eα2ω2tus=ceα2ω2t         (1)logu_s=-\alpha^2\omega^2t+logc\\\Rightarrow \dfrac{u_s}{c}=e^{-\alpha^2\omega^2t}\\\Rightarrow u_s=ce^{-\alpha^2\omega^2t}~~~~~~~~~-(1)


Given initial temprature is-

u(x,0)=sin3πlu(x,0)=sin^3\pi l

Taking finite fourier sine transform-


us=0lsin3πlsin(nπxl)dxu_s=\int_0^lsin^3\pi lsin(\dfrac{n\pi x}{l})dx


us=sin3πlcos(nπxl)0llnπ\Rightarrow u_s=sin^3\pi l|cos(\dfrac{n\pi x}{l})|_0^l\dfrac{l}{n\pi}


us=sin3πl(cosnπcos0)lnπ\Rightarrow u_s=sin^3\pi l(cosn\pi-cos0)\dfrac{l}{n\pi}


us=sin3πl((1)n1)lnπ      (2)\Rightarrow u_s=sin^3\pi l((-1)^n-1)\dfrac{l}{n\pi}~~~~~~-(2)


Comparing eqs.(1) and eqs.(2)--

we get

sin3πl((1)n1)lnπsin^3\pi l((-1)^n-1)\dfrac{l}{n\pi} =ceα2ω2t=ce^{-\alpha^2\omega^2t}


from here we get ,

c=((1)n1)sin3πllnπeα2ω2tc=((-1)^n-1)sin^3\pi l\dfrac{l}{n\pi}e^{\alpha^2\omega^2t}


Put this value in eqs.(1)-

us=((1)n1)sin3πllnπeα2ω2teα2ω2t\Rightarrow u_s=((-1)^n-1)sin^3\pi l\dfrac{l}{n\pi}e^{\alpha^2\omega^2t}e^{-\alpha^2\omega^2t}


us=((1)n1)sin3πllnπ\Rightarrow u_s=((-1)^n-1)sin^3\pi l\dfrac{l}{n\pi}


Taking Inverse fourier sine transform and we get the temprature as-

u=0((1)n1)sin3πllnπsinwtdtu=\int_0^{\infty}((-1)^n-1)sin^3\pi l\dfrac{l}{n\pi}sinwt dt


This is the required temprature distribution.







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS