Let the equation of conduction of heat be,
"\\dfrac{du}{dt}=\\alpha^2\\dfrac{d^2u}{dx^2}"
The boundary conditions are
"(i)u (0,t) = 0, t \u2265 0\\\\ \n\n(ii) u (l,t) = 0,t>0, \\\\\n\n(iii) u (x,0) = f (x)=ksin^3(\\pi l), 0 < x < \u2113"
Taking fourier sine transform of above equation ,
"\\int_0^{\\infty}\\dfrac{du}{dt}sinwxdx=\\alpha^2\\int_0^{\\infty}\\dfrac{d^2u}{dx^2}sinwxdx"
"\\Rightarrow \\dfrac{d}{dt}\\int_0^{\\infty}usinwxdx=\\alpha^2[-\\omega^2u_s]\\\\\\Rightarrow \\dfrac{du_s}{dt}=\\alpha^2(-\\omega^2u_s)\\\\\\Rightarrow \\dfrac{du_s}{u_s}=-\\alpha^2\\omega^2dt"
Integrating both the sides and we get,
"logu_s=-\\alpha^2\\omega^2t+logc\\\\\\Rightarrow \\dfrac{u_s}{c}=e^{-\\alpha^2\\omega^2t}\\\\\\Rightarrow u_s=ce^{-\\alpha^2\\omega^2t}~~~~~~~~~-(1)"
Given initial temprature is-
"u(x,0)=sin^3\\pi l"
Taking finite fourier sine transform-
"u_s=\\int_0^lsin^3\\pi lsin(\\dfrac{n\\pi x}{l})dx"
"\\Rightarrow u_s=sin^3\\pi l|cos(\\dfrac{n\\pi x}{l})|_0^l\\dfrac{l}{n\\pi}"
"\\Rightarrow u_s=sin^3\\pi l(cosn\\pi-cos0)\\dfrac{l}{n\\pi}"
"\\Rightarrow u_s=sin^3\\pi l((-1)^n-1)\\dfrac{l}{n\\pi}~~~~~~-(2)"
Comparing eqs.(1) and eqs.(2)--
we get
"sin^3\\pi l((-1)^n-1)\\dfrac{l}{n\\pi}" "=ce^{-\\alpha^2\\omega^2t}"
from here we get ,
"c=((-1)^n-1)sin^3\\pi l\\dfrac{l}{n\\pi}e^{\\alpha^2\\omega^2t}"
Put this value in eqs.(1)-
"\\Rightarrow u_s=((-1)^n-1)sin^3\\pi l\\dfrac{l}{n\\pi}e^{\\alpha^2\\omega^2t}e^{-\\alpha^2\\omega^2t}"
"\\Rightarrow u_s=((-1)^n-1)sin^3\\pi l\\dfrac{l}{n\\pi}"
Taking Inverse fourier sine transform and we get the temprature as-
"u=\\int_0^{\\infty}((-1)^n-1)sin^3\\pi l\\dfrac{l}{n\\pi}sinwt dt"
This is the required temprature distribution.
Comments
Leave a comment