"y^{(iv)} - 16y = 0\\\\\n\\textsf{The auxiliary equation is}\\,\\,\\,m^4 - 16 = 0.\\\\\n\n(m^2 - 4)(m^2 + 4) = 0\\\\\n\nm^2 = 4, m^2 = -4\\\\\n\nm = \\pm 2, \\pm 2i.\\\\\n\n\\textsf{Recall that if the solution to the}\\\\\n\\textsf{auxiliary equation is of the form}\\,\\,\\, \\alpha + i\\beta, \\\\\n\\textsf{the solution is of the form} \\\\\ny = e^{\\alpha x}\\left(A\\cos(\\beta x) + B\\sin(\\beta x)\\right).\\\\\n\n\\therefore y = Ae^{2x} + Be^{-2x} + C\\cos(2x) + D\\sin(2x).\\,\\,\\,\\textsf{is a solution to the ODE}"
Comments
Leave a comment