Question #152183
The solution of D.E(D^4-16)y=0 is
1
Expert's answer
2020-12-23T17:56:36-0500

y(iv)16y=0The auxiliary equation ism416=0.(m24)(m2+4)=0m2=4,m2=4m=±2,±2i.Recall that if the solution to theauxiliary equation is of the formα+iβ,the solution is of the formy=eαx(Acos(βx)+Bsin(βx)).y=Ae2x+Be2x+Ccos(2x)+Dsin(2x).is a solution to the ODEy^{(iv)} - 16y = 0\\ \textsf{The auxiliary equation is}\,\,\,m^4 - 16 = 0.\\ (m^2 - 4)(m^2 + 4) = 0\\ m^2 = 4, m^2 = -4\\ m = \pm 2, \pm 2i.\\ \textsf{Recall that if the solution to the}\\ \textsf{auxiliary equation is of the form}\,\,\, \alpha + i\beta, \\ \textsf{the solution is of the form} \\ y = e^{\alpha x}\left(A\cos(\beta x) + B\sin(\beta x)\right).\\ \therefore y = Ae^{2x} + Be^{-2x} + C\cos(2x) + D\sin(2x).\,\,\,\textsf{is a solution to the ODE}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS