Question #152055
Solution of : xp^2 - (x-a)^2 = 0
1
Expert's answer
2020-12-21T17:30:00-0500

xp2(xa)2=0xp^2-(x-a)^2=0

we have difference of squares

(xp(xa))(xp+(xa))=0(\sqrt{x}p-(x-a))(\sqrt{x}p+(x-a))=0

Two equations and two solutions:

first equation:

xpx+a=0\sqrt{x}p-x+a=0

p=xax=xaxp=\frac{x-a}{\sqrt{x}}=\sqrt{x}-\frac{a}{\sqrt{x}}

first solution:

z=23x322ax+Cz=\frac{2}{3}x^{\frac{3}{2}}-2a\sqrt{x}+C

second equation:

xp+xa=0\sqrt{x}p+x-a=0

p=xax=x+axp=-\frac{x-a}{\sqrt{x}}=-\sqrt{x}+\frac{a}{\sqrt{x}}

second solution:

z=23x32+2ax+Cz=-\frac{2}{3}x^{\frac{3}{2}}+2a\sqrt{x}+C



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS