Question #152370
Solve. dx/dt=-2x+7y,dy/dt=3x+2ysubject to the condition x(0)=9 and y(0)=-1
1
Expert's answer
2020-12-21T19:42:02-0500

Let us solve the sysytem:


{dxdt=2x+7ydydt=3x+2y\begin{cases} \frac{dx}{dt}=-2x+7y \\ \frac{dy}{dt}=3x+2y \end{cases} x(0)=9x(0)=9 and y(0)=1y(0)=-1


The second eqution is equivalent to x=13(dydt2y)x=\frac{1}{3}( \frac{dy}{dt}-2y), and therefore, dxdt=13(d2ydt22dydt)\frac{dx}{dt}=\frac{1}{3}( \frac{d^2y}{dt^2}-2\frac{dy}{dt}) . Let us put these in the first equation:


13(d2ydt22dydt)=213(dydt2y)+7y\frac{1}{3}( \frac{d^2y}{dt^2}-2 \frac{dy}{dt})=-2\cdot\frac{1}{3}( \frac{dy}{dt}-2y)+7y


13d2ydt223dydt=23dydt+43y+7y\frac{1}{3} \frac{d^2y}{dt^2}-\frac{2}{3} \frac{dy}{dt}=-\frac{2}{3}\frac{dy}{dt}+\frac{4}{3}y+7y


13d2ydt2=253y\frac{1}{3} \frac{d^2y}{dt^2}=\frac{25}{3}y


d2ydt225y=0\frac{d^2y}{dt^2}-25y=0


The characteristic equation k225=0k^2-25=0 of the last differential eqution has the solutions k=5k=5 and k=5.k=-5. Consequently, its general solution is of the form


y(t)=C1e5t+C2e5ty(t)=C_1e^{5t}+C_2e^{-5t}


dydt=5C1e5t5C2e5t\frac{dy}{dt}=5C_1e^{5t}-5C_2e^{-5t}


Thus, x=13(dydt2y)=13(5C1e5t5C2e5t2(C1e5t+C2e5t))=C1e5t73C2e5t.x=\frac{1}{3}( \frac{dy}{dt}-2y)=\frac{1}{3}( 5C_1e^{5t}-5C_2e^{-5t}-2(C_1e^{5t}+C_2e^{-5t}))=C_1e^{5t}-\frac{7}{3}C_2e^{-5t}.


If x(0)=9x(0)=9 and y(0)=1y(0)=-1, then 9=x(0)=C173C29=x(0)=C_1-\frac{7}{3}C_2 and 1=y(0)=C1+C2-1= y(0)=C_1+C_2 .


It follows that C1=2, C2=3.C_1=2,\ C_2=-3.


Therefore, the solution is of the form:


{x(t)=2e5t+7e5ty(t)=2e5t3e5t\begin{cases} x(t)=2e^{5t}+7e^{-5t}\\ y(t)=2e^{5t}-3e^{-5t} \end{cases}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS