dPdt=P100−P2108108dP106P−P2=dt\frac{dP}{dt}=\frac{P}{100}-\frac{P^2}{10^8}\\ 10^8\frac{dP}{10^6P-P^2}=dtdtdP=100P−108P2108106P−P2dP=dt
108∫dP106P−P2=∫dt10^8\int{\frac{dP}{10^6P-P^2}}=\int{dt}108∫106P−P2dP=∫dt
100lnPP−106=t+C1100ln\frac{P}{P-10^6}=t+C_1100lnP−106P=t+C1
PP−106=Cet100\frac{P}{P-10^6}=Ce^{\frac{t}{100}}P−106P=Ce100t
Given that in the year 1980, t=0 and x(0)=105x(0)=10^5x(0)=105 we get C=−19C=-\frac{1}{9}C=−91
Then, PP−106=−19et100\frac{P}{P-10^6}=-\frac{1}{9}e^{\frac{t}{100}}P−106P=−91e100t
P(t)=106et100et100+9P(t)=\frac{10^6e^{\frac{t}{100}}}{e^{\frac{t}{100}}+9}P(t)=e100t+9106e100t
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments