Question #147551
if the population S(t) of a species of mosquitos in the Okavango region Delta at any time t >0 is modeled by the differential equation θ(ds/dt)+γS=〖αe〗^(-φt), whereθ,γ and α are positive constants and φ is a nonnegative constant, and if the initial population of this species is S(0)=S_0,
show that the mosquito population S(t) at any time t >0 is given by S(t)=α/(γ-θφ) e^(-φt)+(S_0-α/(γ-θφ) ) e^(-φt)

show that if φ=0 the species population S(t) approaches α/γ as t →∞ but if φ> the S(t) approaches zero as t→∞
1
Expert's answer
2020-12-01T03:06:50-0500

Let us consider the differential equation


ΘdSdt+γS=αeφt\Theta\frac{dS}{dt}+\gamma S=\alpha e^{-\varphi t}, S(0)=S0S(0)=S_0


where φ0, Θ>0, γ>0, α>0.\varphi\ge 0,\ \Theta>0,\ \gamma>0,\ \alpha >0.


Let us multiply the both part of equation by 1ΘeγtΘ:\frac{1}{\Theta}e^{\frac{\gamma t}{\Theta}}:


dSdteγtΘ+γΘSeγtΘ=αΘeφteγtΘ\frac{dS}{dt}e^{\frac{\gamma t}{\Theta}}+\frac{\gamma}{\Theta} Se^{\frac{\gamma t}{\Theta}}=\frac{\alpha}{\Theta} e^{-\varphi t}e^{\frac{\gamma t}{\Theta}}.


The last equation is equivalent to


ddt(SeγtΘ)=αΘe(γΘφ)t\frac{d}{dt}(Se^{\frac{\gamma t}{\Theta}})=\frac{\alpha}{\Theta} e^{(\frac{\gamma }{\Theta}-\varphi) t}


Therefore,


SeγtΘ=αγφΘeγφΘΘt+CSe^{\frac{\gamma t}{\Theta}}=\frac{\alpha}{\gamma -\varphi \Theta} e^{\frac{\gamma-\varphi\Theta }{\Theta} t}+C


Let us multiply the both part of equation by eγtΘ:e^{-\frac{\gamma t}{\Theta}}:


S(t)=αγφΘeφt+CeγtΘS(t)=\frac{\alpha}{\gamma -\varphi \Theta} e^{-\varphi t}+Ce^{-\frac{\gamma t}{\Theta}}.


Let t=0t=0. Then


S0=S(0)=αγφΘ+C,S_0=S(0)=\frac{\alpha}{\gamma -\varphi \Theta} +C, and thus C=S0αγφΘC=S_0-\frac{\alpha}{\gamma -\varphi \Theta}.


Consequently, the solution of the differential equation is the following:


S(t)=αγφΘeφt+(S0αγφΘ)eγtΘS(t)=\frac{\alpha}{\gamma -\varphi \Theta} e^{-\varphi t}+(S_0-\frac{\alpha}{\gamma -\varphi \Theta})e^{-\frac{\gamma t}{\Theta}}.


If φ=0\varphi =0, then S(t)=αγ+(S0αγ)eγtΘS(t)=\frac{\alpha}{\gamma} +(S_0-\frac{\alpha}{\gamma})e^{-\frac{\gamma t}{\Theta}}, and thus


limt+S(t)=limt+[αγ+(S0αγ)eγtΘ]=αγ\lim_{t\to+\infty}S(t)=\lim_{t\to+\infty}[\frac{\alpha}{\gamma} +(S_0-\frac{\alpha}{\gamma})e^{-\frac{\gamma t}{\Theta}}]=\frac{\alpha}{\gamma}


So, if φ=0φ=0 the species population S(t)S(t) approaches αγ\frac{\alpha}{\gamma} as t+.t\to+\infty.



If φ>0,\varphi>0, then limt+S(t)=limt+[αγφΘeφt+(S0αγφΘ)eγtΘ]=0\lim_{t\to+\infty}S(t)=\lim_{t\to+\infty}[\frac{\alpha}{\gamma -\varphi \Theta} e^{-\varphi t}+(S_0-\frac{\alpha}{\gamma -\varphi \Theta})e^{-\frac{\gamma t}{\Theta}}]=0.


Therefore, if φ>0φ>0 the S(t)S(t) approaches zero as t+.t\to+\infty.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS