y′′+(y′)2=2e−yLety=ln(f(x))y′=f(x)f′(x)y′′=f(x)2f(x)f"(x)−f′(x)2y′′+(y′)2=2e−y⟹f(x)2f(x)f"(x)−f′(x)2+(f(x)f′(x))2=f(x)2f(x)2f(x)f"(x)−f(x)2=0f(x)f"(x)−f(x)2=0⟹f"(x)−2=0f"(x)=2⟹∫f"(x)dx=∫2dxf′(x)=2x+C1∫f′(x)dx=∫2x+C1dxf(x)=x2+C1x+C2∴y=ln(x2+C1x+C2)is the general solutionto the differential equation, whereC1andC2are arbitrary constants.
Comments