"\\displaystyle\n\n\\frac{\\mathrm{d}v}{\\mathrm{d}t} + 0.25v = 10\\\\\n\n\\textsf{This can be solved by multiplying}\\\\\\textsf{both sides of the differential equation}\\\\\\textsf{by an integrating factor.}\\\\\n\n\n\\frac{\\mathrm{d}v}{\\mathrm{d}t} + 0.25v = 10\\\\\n\n\nI.F = \\textsf{Integrating factor}\\\\\n\n\n\nI.F = e^{\\int 0.25 \\, \\mathrm{d}t} = e^{\\frac{t}{4}}\\\\\n\n\\textsf{The solution to the first order linear}\\\\\\textsf{differential equation is thus;}\\\\\n\n\nv\\, I.F = \\int 10 I.F \\, \\mathrm{d}t\\\\\n\n\\begin{aligned}\nve^{\\frac{t}{4}} &= \\int 10\\,e^{\\frac{t}{4}} \\, \\mathrm{d}t\\\\\nve^{\\frac{t}{4}} &= 10 \\times 4 e^{\\frac{t}{4}} + C\\\\\nve^{\\frac{t}{4}} &= 40e^{\\frac{t}{4}} + C\\\\\nv&= 40 + Ce^{-\\frac{t}{4}}\\\\\nv(t) &= 40 + Ce^{-\\frac{t}{4}}\n\\end{aligned}\\\\\n\n\n\\textsf{It is given that} \\,v(0) = 0\\\\\n\n\nv(0)= 40 + C = 0 \\implies C = -40\\\\\n\n\n\\therefore v(t)= 40 - 40e^{-\\frac{t}{4}} = 40\\left(1 - e^{-\\frac{t}{4}}\\right)"
Comments
Leave a comment