Find the eigenvalues and eigenfunctions of
π¦
β²β² +
ο¬
π¦ = 0 , 0 < π₯ < 3
π¦β²(0) = 0 , π¦β²(3) = 0
The auxiliary equation
"r=\\pm\\sqrt{-\\lambda}, \\lambda\\leq0"
The corresponding solution to our ODE will be
"y'=-A\\sqrt{\\lambda}\\sin(\\sqrt{\\lambda }x)+B\\sqrt{\\lambda}\\cos(\\sqrt{\\lambda }x)"
"y'(0)=0=>B=0"
"y'(3)=0=>\\sin(3\\sqrt{\\lambda })=0"
"3\\sqrt{\\lambda }=\\pi n, n=1, 2, 3,..."
"\\lambda_n=\\dfrac{n^2\\pi ^2}{9},n=1, 2, 3,..."
The eigenvalue problem has the eigenvalue "\\lambda_0=0," with associated eigenfunction "y_0=1," and infinitely many positive eigenvalues "\\lambda_n=\\dfrac{n^2\\pi ^2}{9}," with associated eigenfunctions "y_n=\\cos(\\dfrac{n\\pi x}{3}), n=1,2,3,..."
There are no other eigenvalues.
Comments
Leave a comment