Given,
p2−2xyp+4y2=0 Now, solve the quadratic equation in p, thus we get,
p=22xy±4x2y2−16y2⟹p=y(x±x2−4) Hence,
dxdy=y(x±x2−4)⟹ydy=(x±x2−4)dx⟹∫ydy=∫(x±x2−4)dx⟹lny=∫xdx±∫x2−4)dx⟹lny=2x2±∫x2−4)dx Since,
we know from standard integral that
Thus,
∫x2−4dx=2xx2−4−2ln(∣∣x2−4+x∣∣)+C Hence,
lny=2x2±2xx2−4−2ln(∣∣x2−4+x∣∣)+C⟹y=e2x2±2xx2−4−2ln(∣x2−4+x∣)+C⟹y=C1e2x2±2xx2−4−2ln(∣x2−4+x∣)
Comments