Question #138206
Solve
p^2 -2xyp+4y^2=0,where p=dy/dx
1
Expert's answer
2020-10-14T17:03:21-0400

Given,

p22xyp+4y2=0p^2 -2xyp+4y^2=0

Now, solve the quadratic equation in p, thus we get,


p=2xy±4x2y216y22    p=y(x±x24)p=\frac{2xy\pm \sqrt{4x^2y^2-16y^2}}{2}\\ \implies p=y(x\pm\sqrt{x^2-4})

Hence,


dydx=y(x±x24)    dyy=(x±x24)dx    dyy=(x±x24)dx    lny=xdx±x24)dx    lny=x22±x24)dx\frac{dy}{dx}=y(x\pm\sqrt{x^2-4})\\ \implies \frac{dy}{y}=(x\pm\sqrt{x^2-4})dx\\ \implies \int \frac{dy}{y}=\int(x\pm\sqrt{x^2-4})dx\\ \implies \ln y=\int xdx\pm\int \sqrt{x^2-4})dx\\ \implies \ln y=\frac{x^2}{2}\pm \int\sqrt{x^2-4})dx

Since,

we know from standard integral that


Thus,


x24dx=xx2422ln(x24+x)+C\int \sqrt{x^2-4}dx=\dfrac{x\sqrt{x^2-4}}{2}-2\ln\left(\left|\sqrt{x^2-4}+x\right|\right)+C

Hence,


lny=x22±xx2422ln(x24+x)+C    y=ex22±xx2422ln(x24+x)+C    y=C1ex22±xx2422ln(x24+x)\ln y=\frac{x^2}{2}\pm \dfrac{x\sqrt{x^2-4}}{2}-2\ln\left(\left|\sqrt{x^2-4}+x\right|\right)+C\\ \implies y=e^{\frac{x^2}{2}\pm \dfrac{x\sqrt{x^2-4}}{2}-2\ln\left(\left|\sqrt{x^2-4}+x\right|\right)+C}\\ \implies y=C_1e^{\frac{x^2}{2}\pm \dfrac{x\sqrt{x^2-4}}{2}-2\ln\left(\left|\sqrt{x^2-4}+x\right|\right)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS