Given,
Mass m=0.1kg
spring constant k=4kg/m
displacement of mass s=1m
Damping constant c=1.2
External force F=5sin4t
Damping force , "F_d=-cs'" (where s' is velocity)
Spring force f"=-k(x+s)"
Force due to gravity on the block= mg
When the Mass is in equillibrium
According to hook's law
mg=ks
Now the equation that governs the system is given by,
"mx''=mg-k(s+x)+f_d+F"
"mx''=-kx-cx'+5sin4t" ( since mg=ks)
m"x''+cx'+kx=5sin4t" ....(1)
Now Damping ratio is given by,
"\\zeta=\\frac{c}{2\\sqrt{mk}}"
="\\frac{1.2}{2\\times \\sqrt{0.1\\times 4}}"
="\\frac{0.6}{\\sqrt{0.4}}"
=0.94<1
"\\zeta<1"
So The motion is underdamped.
for position solving equation equation 1,
0.1x''+1.2x'+4x=5sin4t
on solving the left side part,
"0.1m^2+1.2m+4=0"
Roots of above equation is given by,
"r_1=-\\frac{c}{2m}-i\\omega_1" and "r_2=-\\frac{c}{2m}+i\\omega_1"
where "\\omega_1=\\frac{\\sqrt{4mk-c^2}}{2m}" ="\\frac{\\sqrt{4\\times 0.1\\times 4-(1.2)^2}}{2\\times0.1}"
="\\frac{1.6-1.44}{0.2}" ="\\frac{0.16}{0.2}" =0.8
The complimentary function is given by,
c.f="e^{-\\frac{ct}{2m}}(c_1cos0.8t+c_2sin0.8t)"
= "e^{-\\frac{1.2t}{0.2}}(c_1cos0.8t+c_2sin0.8t)"
Particular integral is given by,
P.I.="5\\frac{sin4t}{0.1m^2+1.2m+4}"
="\\frac{5sin4t}{-0.1\\times16+1.2m+4}"
="\\frac{5sin4t}{1.2m+2.4}"
="\\frac{5sin4t}{1.2m+2.4}\\times \\frac{1.2m-2.4}{1.2m-2.4}"
="\\frac{(1.2m-2.4)5sin4t}{1.44m^2-5.76}"
="\\frac{(1.2m-2.4)5sin4t}{1.44\\times -16-5.76}"
="\\frac{(24cos4t-12sin4t)}{-23.04-5.76}"
="\\frac{(24cos4t-12sin4t)}{-28.8}"
Complete solution is given by,
x= "e^{-6t}(c_1cos0.8t+c_2sin0.8t)" -"\\frac{(24cos4t-12sin4t)}{28.8}"
This is the position at time t.
Comments
Leave a comment