(i) We compute the derivatives and find that
uxx=−λ2e−λycos(λx),uyy=λ2e−λycos(λx)
From the latter it follows that the Laplace equation is satisfied. I.e., uxx+uyy=0 .
(ii)
uλ=−λe−λycos(λx)−e−λysin(λx),
uλλ=λ2e−λycos(λx)+λ2e−λysin(λx)+λe−λysin(λx)−λe−λycos(λx)=
=λ2u−λu+λ2v+λv,
where v=e−λysin(λx) . We compute the second order derivatives and get vxx=−λ2e−λysin(λx),vyy=λ2e−λysin(λx) .
Thus, uλλ also satisfies the Laplace equation.
(iii) At first, we calculate the indefinite integral ∫e−λycos(λx)dλ=−y1e−λycos(λx)+
−yx∫e−λysin(λx)dλ=−y1e−λycos(λx)+y2xe−λysin(λx)−y2x2∫e−λycos(λx)dλ
We denote I=∫e−λycos(λx)dλ . Then I=−y1e−λycos(λx)+y2xe−λysin(λx)−y2x2I .
From the latter we get: I=−x2+y2ye−λycos(λx)+x2+y2xe−λysin(λx)
Using the latter, we get v(x,y)=∫0+∞e−λycos(λx)dλ=x2+y2y
The latter has the following derivatives:
vxx=(y2+x2)32y(3x2−y2);vyy=−(y2+x2)32y(3x2−y2)
From the latter it is clear that vxx+vyy=0 .
Comments