Question #131399
2. (i) Verify that
u(x,y;λ) = e−λy cosλx, −∞ < λ < ∞
is a one parameter family of solutions of Laplaces’s equation in R2.
(ii) Find v(x,y;λ) = ∂ ∂λu(x,y;λ) and verify that v(x,y;λ), − ∞ < λ < ∞, is also a one parameter family of solutions of Laplace’s equation in R2.
(iii) For (x,y) in the upper half plane y > 0, the improper integral
v(x,y) = ∞ u(x,y;λ)dλ 0
is convergent. Evaluate this integral and show by direct computation that v(x,y) is a solution of Laplace’s equation in the upper half plane.
1
Expert's answer
2020-09-07T16:46:08-0400

(i) We compute the derivatives and find that

uxx=λ2eλycos(λx),uyy=λ2eλycos(λx)u_{xx}=-\lambda^2e^{-\lambda y}cos(\lambda x),\quad u_{yy}=\lambda^2e^{-\lambda y}cos(\lambda x)

From the latter it follows that the Laplace equation is satisfied. I.e., uxx+uyy=0u_{xx}+u_{yy}=0 .

(ii)

uλ=λeλycos(λx)eλysin(λx),u_{\lambda}=-\lambda e^{-\lambda y}cos(\lambda x)-e^{-\lambda y}sin(\lambda x),

uλλ=λ2eλycos(λx)+λ2eλysin(λx)+λeλysin(λx)λeλycos(λx)=u_{\lambda\lambda}=\lambda^2e^{-\lambda y}cos(\lambda x)+\lambda^2e^{-\lambda y}sin(\lambda x)+\lambda e^{-\lambda y}sin(\lambda x)-\lambda e^{-\lambda y}cos(\lambda x)=

=λ2uλu+λ2v+λv,=\lambda^2u-\lambda u+\lambda^2 v+\lambda v,

where v=eλysin(λx)v=e^{-\lambda y}sin(\lambda x) . We compute the second order derivatives and get vxx=λ2eλysin(λx),vyy=λ2eλysin(λx)v_{xx}=-\lambda^2e^{-\lambda y}sin(\lambda x), v_{yy}=\lambda^2e^{-\lambda y}sin(\lambda x) .

Thus, uλλu_{\lambda\lambda} also satisfies the Laplace equation.

(iii) At first, we calculate the indefinite integral eλycos(λx)dλ=1yeλycos(λx)+\int e^{-\lambda y}cos(\lambda x)d\lambda=-\frac{1}{y}e^{-\lambda y}cos(\lambda x)+

xyeλysin(λx)dλ=1yeλycos(λx)+xy2eλysin(λx)x2y2eλycos(λx)dλ-\frac{x}{y}\int e^{-\lambda y}sin(\lambda x)d\lambda=-\frac{1}{y}e^{-\lambda y}cos(\lambda x)+\frac{x}{y^2}e^{-\lambda y}sin(\lambda x)-\frac{x^2}{y^2}\int e^{-\lambda y}cos(\lambda x)d\lambda

We denote I=eλycos(λx)dλI=\int e^{-\lambda y}cos(\lambda x)d\lambda . Then I=1yeλycos(λx)+xy2eλysin(λx)x2y2II=-\frac{1}{y}e^{-\lambda y}cos(\lambda x)+\frac{x}{y^2}e^{-\lambda y}sin(\lambda x)-\frac{x^2}{y^2}I .

From the latter we get: I=yx2+y2eλycos(λx)+xx2+y2eλysin(λx)I=-\frac{y}{x^2+y2}e^{-\lambda y}cos(\lambda x)+\frac{x}{x^2+y^2}e^{-\lambda y}sin(\lambda x)

Using the latter, we get v(x,y)=0+eλycos(λx)dλ=yx2+y2v(x,y)=\int_0^{+\infty} e^{-\lambda y}cos(\lambda x)d\lambda=\frac{y}{x^2+y^2}

The latter has the following derivatives:

vxx=2y(3x2y2)(y2+x2)3;vyy=2y(3x2y2)(y2+x2)3v_{xx}=\frac{2y(3x^2-y^2)}{(y^2+x^2)^3};\qquad v_{yy}=-\frac{2y(3x^2-y^2)}{(y^2+x^2)^3}

From the latter it is clear that vxx+vyy=0v_{xx}+v_{yy}=0 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS