Question #130833
Particular integral of d²y/dx² +3dy/xdx +2/x² = 0 is
1
Expert's answer
2020-08-27T17:00:01-0400

Let:

y=v(x)y'=v(x)

then:

y=vy''=v'

Let:

μ(x)=e3/xdx=x3\mu(x)=e^{\int3/xdx}=x^3

Multiply all terms of the given equation by μ(x)\mu(x) :

x3v+3x2v=2xx^3v'+3x^2v=-2x

Substitute 3x2=ddx(x3)3x^2=\frac{d}{dx}(x^3) :

x3dv(x)dx+ddx(x3)v(x)=2xx^3\frac{dv(x)}{dx}+\frac{d}{dx}(x^3)v(x)=-2x

Then:

ddx(x3v)=2x\frac{d}{dx}(x^3v)=-2x

ddx(x3v)dx=2xdx\int\frac{d}{dx}(x^3v)dx=-\int2xdx

x3v=x2+c1x^3v=-x^2+c_1

v=dydx=x2+c1x3v=\frac{dy}{dx}=\frac{-x^2+c_1}{x^3}

Answer:

y(x)=x2+c1x3dx=lnxc12x2+c2y(x)=\int\frac{-x^2+c_1}{x^3}dx=-lnx-\frac{c_1}{2x^2}+c_2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS