Let:
y′=v(x)
then:
y′′=v′
Let:
μ(x)=e∫3/xdx=x3
Multiply all terms of the given equation by μ(x) :
x3v′+3x2v=−2x
Substitute 3x2=dxd(x3) :
x3dxdv(x)+dxd(x3)v(x)=−2x
Then:
dxd(x3v)=−2x
∫dxd(x3v)dx=−∫2xdx
x3v=−x2+c1
v=dxdy=x3−x2+c1
Answer:
y(x)=∫x3−x2+c1dx=−lnx−2x2c1+c2
Comments