Let:
"y'=v(x)"
then:
"y''=v'"
Let:
"\\mu(x)=e^{\\int3\/xdx}=x^3"
Multiply all terms of the given equation by "\\mu(x)" :
"x^3v'+3x^2v=-2x"
Substitute "3x^2=\\frac{d}{dx}(x^3)" :
"x^3\\frac{dv(x)}{dx}+\\frac{d}{dx}(x^3)v(x)=-2x"
Then:
"\\frac{d}{dx}(x^3v)=-2x"
"\\int\\frac{d}{dx}(x^3v)dx=-\\int2xdx"
"x^3v=-x^2+c_1"
"v=\\frac{dy}{dx}=\\frac{-x^2+c_1}{x^3}"
Answer:
"y(x)=\\int\\frac{-x^2+c_1}{x^3}dx=-lnx-\\frac{c_1}{2x^2}+c_2"
Comments
Leave a comment