As per the question,
u satisfy the laplace equation
"\\Omega" ={(x,y),"x^2+y^2<1"
According to the given condition
u("cos\\theta,sin\\theta)\\le sin\\theta+cos2\\theta" ...(1)
Let for disk we assume polar coordinates
x"=cos\\theta,y=sin\\theta"
Since u satisfy the given disk,so u must satisfy the polar coordinates of disk
New equation became
"u(cos\\theta,sin\\theta)\\le sin\\theta+cos^2\\theta-sin^2\\theta"
u(x,y)"\\le y+x^2-y^2"
Hence
u(x,y)"\\le y+x^2-y^2 \\forall(x,y)\\isin Q"
Comments
Leave a comment