Question #131393
Apply the method of separation of variables to solve the following Dirichlet boundary value problem
uxx +uyy = 0, 0 <x<a, 0<y <b,
u(x,0) = f(x), u(x,b) = 0, 0 ≤ x ≤ a,
u(0,y) = 0, u(a,y) = 0, 0 ≤ y ≤ b.
1
Expert's answer
2020-09-01T18:32:08-0400

uxx+uyy=0,x(0,a),y(0,b)u(0,y)=0,ux(a,y)=0,y[0,b]u(x,0)=f(x),u(x,b)=0,x[0,a]u(x,y)=X(x)Y(y)ux=XY,uxx=XYuy=XY,uyy=XYu_{xx}+u_{yy}=0, x\in(0,a), y\in(0,b)\\ u(0,y)=0,u_x(a,y)=0,y\in[0,b]\\ u(x,0)=f(x), u(x,b)=0, x\in[0,a]\\ u(x,y)=X(x)Y(y)\\ u_x=X'Y, u_{xx}=X''Y\\ u_y=XY',u_{yy}=XY''\\

the separation of variables and used

u(0,y)=0,ux(a,y)=0,y[0,b]u(0,y)=0,u_x(a,y)=0,y\in[0,b]

we have

X(x)+λX(x)=0,0<x<a,X(0)=X(a)=0X''(x)+\lambda X(x)=0, 0<x<a, X(0)=X'(a)=0

eigenvalues

λk=(2k+1aπ2)2,kZ+\lambda_k=(\frac{2k+1}{a}\frac{\pi}{2})^2, k\in Z_+

eigenfunctions


Xk(x)=sin2k+1aπ2x,kZ+X_k(x)=\sin\frac{2k+1}{a}\frac{\pi}{2}x, k\in Z_+

YY find from

YkλkYk=0,kZ+Yk(y)=Akeλky+Bkeλky,kZ+Y''_k-\lambda_kY_k=0, k\in Z_+\\ Y_k(y)=A_ke^{\sqrt{\lambda_k}y}+B_ke^{-\sqrt{\lambda_k}y}, k\in Z_+

solution of problem is

u(x,y)=k=0(Ake2k+1aπ2y+Bke2k+1aπ2y)sin2k+1aπ2xu(x,y)=\sum\limits_{k=0}^{\infty}(A_ke^{\frac{2k+1}{a}\frac{\pi}{2}y}+B_ke^{-\frac{2k+1}{a}\frac{\pi}{2}y})\sin\frac{2k+1}{a}\frac{\pi}{2}x


u(x,y)u(x,0)=f(x),u(x,b)=0,x[0,a]u(x,y)\to u(x,0)=f(x), u(x,b)=0, x\in[0,a]

{k=0(Ak+Bk)sin2k+1aπ2x=f(x)k=0(Ake2k+1aπ2b+Bke2k+1aπ2b)sin2k+1aπ2x=0,x[0,a]{Ak+Bk=fkAke2k+1aπ2b+Bke2k+1aπ2b=0,kZ+\left\{\begin{matrix} \sum\limits_{k=0}^{\infty}(A_k+B_k)\sin\frac{2k+1}{a}\frac{\pi}{2}x=f(x)\\ \sum\limits_{k=0}^{\infty}(A_ke^{\frac{2k+1}{a}\frac{\pi}{2}b}+B_ke^{-\frac{2k+1}{a}\frac{\pi}{2}b})\sin\frac{2k+1}{a}\frac{\pi}{2}x=0, \end{matrix}\right.\\ x\in[0,a]\\ \left\{\begin{matrix} A_k+B_k=f_k\\ A_ke^{\frac{2k+1}{a}\frac{\pi}{2}b}+B_ke^{-\frac{2k+1}{a}\frac{\pi}{2}b}=0, k\in Z_+ \end{matrix}\right.

where

fk=2a0af(z)sin2k+1aπ2zdz,kZ+f_k=\frac{2}{a}\int^{a}_{0}f(z)\sin\frac{2k+1}{a}\frac{\pi}{2}zdz, k\in Z_+

Then

Ak=fke2k+1aπ2b2sh2k+1aπ2bBk=fke2k+1aπ2b2sh2k+1aπ2b,kZ+A_k=\frac{-f_ke^{-\frac{2k+1}{a}\frac{\pi}{2}b}}{2sh\frac{2k+1}{a}\frac{\pi}{2}b}\\ B_k=\frac{f_ke^{-\frac{2k+1}{a}\frac{\pi}{2}b}}{2sh\frac{2k+1}{a}\frac{\pi}{2}b}, k\in Z_+

u(x,y)=k=0fksh2k+1aπ2(by)sh2k+1aπ2ysin(2k+1)π2ax,x(0,a),y(0,b)u(x,y)=\sum ^{\infty}_{k=0}\frac{f_ksh{\frac{2k+1}{a}\frac{\pi}{2}(b-y)}}{sh\frac{2k+1}{a}\frac{\pi}{2}y}\sin\frac{(2k+1)\pi}{2a}x, \\ x\in(0,a), y\in(0,b)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS