"u_{xx}+u_{yy}=0, x\\in(0,a), y\\in(0,b)\\\\\nu(0,y)=0,u_x(a,y)=0,y\\in[0,b]\\\\\nu(x,0)=f(x), u(x,b)=0, x\\in[0,a]\\\\\nu(x,y)=X(x)Y(y)\\\\\nu_x=X'Y, u_{xx}=X''Y\\\\\nu_y=XY',u_{yy}=XY''\\\\"
the separation of variables and used
"u(0,y)=0,u_x(a,y)=0,y\\in[0,b]"
we have
"X''(x)+\\lambda X(x)=0, 0<x<a, X(0)=X'(a)=0"
eigenvalues
"\\lambda_k=(\\frac{2k+1}{a}\\frac{\\pi}{2})^2, k\\in Z_+"
eigenfunctions
"X_k(x)=\\sin\\frac{2k+1}{a}\\frac{\\pi}{2}x, k\\in Z_+"
"Y" find from
"Y''_k-\\lambda_kY_k=0, k\\in Z_+\\\\\nY_k(y)=A_ke^{\\sqrt{\\lambda_k}y}+B_ke^{-\\sqrt{\\lambda_k}y}, k\\in Z_+"
solution of problem is
"u(x,y)=\\sum\\limits_{k=0}^{\\infty}(A_ke^{\\frac{2k+1}{a}\\frac{\\pi}{2}y}+B_ke^{-\\frac{2k+1}{a}\\frac{\\pi}{2}y})\\sin\\frac{2k+1}{a}\\frac{\\pi}{2}x"
"u(x,y)\\to u(x,0)=f(x), u(x,b)=0, x\\in[0,a]"
"\\left\\{\\begin{matrix}\n \n\\sum\\limits_{k=0}^{\\infty}(A_k+B_k)\\sin\\frac{2k+1}{a}\\frac{\\pi}{2}x=f(x)\\\\\n\\sum\\limits_{k=0}^{\\infty}(A_ke^{\\frac{2k+1}{a}\\frac{\\pi}{2}b}+B_ke^{-\\frac{2k+1}{a}\\frac{\\pi}{2}b})\\sin\\frac{2k+1}{a}\\frac{\\pi}{2}x=0, \\end{matrix}\\right.\\\\\nx\\in[0,a]\\\\\n\n\\left\\{\\begin{matrix}\nA_k+B_k=f_k\\\\\nA_ke^{\\frac{2k+1}{a}\\frac{\\pi}{2}b}+B_ke^{-\\frac{2k+1}{a}\\frac{\\pi}{2}b}=0, k\\in Z_+\n\n \n\\end{matrix}\\right."
where
"f_k=\\frac{2}{a}\\int^{a}_{0}f(z)\\sin\\frac{2k+1}{a}\\frac{\\pi}{2}zdz, k\\in Z_+"
Then
"A_k=\\frac{-f_ke^{-\\frac{2k+1}{a}\\frac{\\pi}{2}b}}{2sh\\frac{2k+1}{a}\\frac{\\pi}{2}b}\\\\\nB_k=\\frac{f_ke^{-\\frac{2k+1}{a}\\frac{\\pi}{2}b}}{2sh\\frac{2k+1}{a}\\frac{\\pi}{2}b}, k\\in Z_+"
"u(x,y)=\\sum ^{\\infty}_{k=0}\\frac{f_ksh{\\frac{2k+1}{a}\\frac{\\pi}{2}(b-y)}}{sh\\frac{2k+1}{a}\\frac{\\pi}{2}y}\\sin\\frac{(2k+1)\\pi}{2a}x, \\\\\nx\\in(0,a), y\\in(0,b)"
Comments
Leave a comment