Question #130536
Solve (1+yz)dx+x(z-x)dy-(1+xy)dz=0
1
Expert's answer
2020-08-25T12:55:05-0400

Let zx=uz-x=u, then z=x+uz=x+u and dz=dx+dudz=dx+du.

Rewrite the equation replacing zz by x+ux+u:

(1+xy+yu)dx+xudy(1+xy)dx(1+xy)du=0(1+xy+yu)dx+xudy-(1+xy)dx-(1+xy)du=0

After simplification we obtain yudx+xudy(1+xy)du=0yudx+xudy-(1+xy)du=0

Note that xdy+ydx=d(xy+1)xdy+ydx=d(xy+1), so we have ud(1+xy)(1+xy)du=0ud(1+xy)-(1+xy)du=0.

After dividing it by (1+xy)2(1+xy)^2 we obtain d(u1+xy)=ud(1+xy)(1+xy)du(1+xy)2=0d\left(\frac{u}{1+xy}\right)=-\frac{ud(1+xy)-(1+xy)du}{(1+xy)^2}=0, so u1+xy=C\frac{u}{1+xy}=C

Since u=zxu=z-x, we have zx1+xy=C\frac{z-x}{1+xy}=C. After expressing zz we obtain z=x+C(1+xy)z=x+C(1+xy)

Answer: z=x+C(1+xy)z=x+C(1+xy)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS