( x 2 + 2 ) y ′ ′ − x y ′ + y = 0 y = C 0 x σ + C 1 x σ + 1 + C 2 x σ + 2 + . . . ( x 2 + 2 ) ∗ ( C 0 σ ( σ − 1 ) x σ − 2 + C 1 ( σ + 1 ) σ x σ − 1 + . . . ) − x ∗ ( C 0 σ x σ − 1 + C 1 ( σ + 1 ) x σ + . . . ) + C 0 x σ + C 1 x σ + 1 + C 2 x σ + 2 + . . . = 0 L e t c o e f f i c i e n t s n e a r x k ( w h e r e k = σ − 2 , … , ∞ ) b e e q u a l t o z e r o . T h e n w e h a v e t h e n e x t s y s t e m : { 2 C 0 σ ( σ − 1 ) = 0 2 C 1 σ ( σ + 1 ) = 0 C 0 σ ( σ − 1 ) + ( σ + 2 ) ( σ + 1 ) C 2 − C 0 σ + C 0 = 0 . . . . . . . . C k ( σ + k − 1 ) 2 + 2 C k + 2 ( σ + k + 2 ) ( σ + k + 1 ) = 0 L e t σ = 0 t h e n : C k = ( − 1 ) k / 2 C 0 2 k / 2 k ! , i f k i s d i v i s i b l e b y 2 , a n d C k = ( − 1 ) ( k − 1 ) / 2 C 1 2 ( k − 1 ) / 2 k ! o t h e r w i s e . y = ∑ k = 0 , k = k + 2 ( − 1 ) k / 2 C 0 2 k / 2 k ! x k + ∑ k = 1 , k = k + 2 ( − 1 ) ( k − 1 ) / 2 C 1 2 ( k − 1 ) / 2 k ! x k y ( 0 ) = 7 = > C 0 = 7 y ′ ( 0 ) = 9 = > C 1 = 9 y = 7 ∑ k = 0 , k = k + 2 ( − 1 ) k / 2 2 k / 2 k ! x k + 9 ∑ k = 1 , k = k + 2 ( − 1 ) ( k − 1 ) / 2 2 ( k − 1 ) / 2 k ! x k (x^2+2)y''-xy'+y=0\newline
y=C_0x^\sigma+C_1x^{\sigma+1}+C_2x^{\sigma+2}+...\\
(x^2+2)*(C_0\sigma(\sigma-1)x^{\sigma-2}+C_1(\sigma+1)\sigma x^{\sigma-1}+...)-x*(C_0\sigma x^{\sigma-1}+C_1(\sigma+1)x^{\sigma}+...)+C_0x^\sigma+C_1x^{\sigma+1}+C_2x^{\sigma+2}+...=0\\
Let\space coefficients \space near \space x^k(where \space k=\sigma-2, \ldots,\infin)\space be\, equal \space to \space zero. \space \\Then \space we \space have \space the \space next\space system:\\
\begin{cases}
2C_0\sigma(\sigma-1)=0\\
2C_1\sigma(\sigma+1)=0\\
C_0\sigma(\sigma-1)+(\sigma+2)(\sigma+1)C_2-C_0\sigma+C_0=0\\
........\\
C_k(\sigma+k-1)^2+2C_{k+2}(\sigma+k+2)(\sigma+k+1)=0
\end{cases}\\
Let\space\sigma=0\space then:\\
C_k=\dfrac{(-1)^{k/2}C_0}{2^{k/2}k!}, \space if \space k \space is\,divisible \space by\, 2, and\space C_k=\dfrac{(-1)^{(k-1)/2}C_1}{2^{(k-1)/2}k!}\space \space otherwise\space .\\
y=\underset{k=0,\space k=k+2}{\sum}\dfrac{(-1)^{k/2}C_0}{2^{k/2}k!}x^k +\underset{k=1,\space k=k+2}{\sum}\dfrac{(-1)^{(k-1)/2}C_1}{2^{(k-1)/2}k!}x^k\newline
y(0)=7=>C_0=7\\
y'(0)=9=>C_1=9\\
y=7\underset{k=0,\space k=k+2}{\sum}\dfrac{(-1)^{k/2}}{2^{k/2}k!}x^k +9\underset{k=1,\space k=k+2}{\sum}\dfrac{(-1)^{(k-1)/2}}{2^{(k-1)/2}k!}x^k\newline ( x 2 + 2 ) y ′′ − x y ′ + y = 0 y = C 0 x σ + C 1 x σ + 1 + C 2 x σ + 2 + ... ( x 2 + 2 ) ∗ ( C 0 σ ( σ − 1 ) x σ − 2 + C 1 ( σ + 1 ) σ x σ − 1 + ... ) − x ∗ ( C 0 σ x σ − 1 + C 1 ( σ + 1 ) x σ + ... ) + C 0 x σ + C 1 x σ + 1 + C 2 x σ + 2 + ... = 0 L e t coe ff i c i e n t s n e a r x k ( w h ere k = σ − 2 , … , ∞ ) b e e q u a l t o zero . T h e n w e ha v e t h e n e x t sys t e m : ⎩ ⎨ ⎧ 2 C 0 σ ( σ − 1 ) = 0 2 C 1 σ ( σ + 1 ) = 0 C 0 σ ( σ − 1 ) + ( σ + 2 ) ( σ + 1 ) C 2 − C 0 σ + C 0 = 0 ........ C k ( σ + k − 1 ) 2 + 2 C k + 2 ( σ + k + 2 ) ( σ + k + 1 ) = 0 L e t σ = 0 t h e n : C k = 2 k /2 k ! ( − 1 ) k /2 C 0 , i f k i s d i v i s ib l e b y 2 , an d C k = 2 ( k − 1 ) /2 k ! ( − 1 ) ( k − 1 ) /2 C 1 o t h er w i se . y = k = 0 , k = k + 2 ∑ 2 k /2 k ! ( − 1 ) k /2 C 0 x k + k = 1 , k = k + 2 ∑ 2 ( k − 1 ) /2 k ! ( − 1 ) ( k − 1 ) /2 C 1 x k y ( 0 ) = 7 => C 0 = 7 y ′ ( 0 ) = 9 => C 1 = 9 y = 7 k = 0 , k = k + 2 ∑ 2 k /2 k ! ( − 1 ) k /2 x k + 9 k = 1 , k = k + 2 ∑ 2 ( k − 1 ) /2 k ! ( − 1 ) ( k − 1 ) /2 x k
Comments