(x2+2)y′′−xy′+y=0y=C0xσ+C1xσ+1+C2xσ+2+...(x2+2)∗(C0σ(σ−1)xσ−2+C1(σ+1)σxσ−1+...)−x∗(C0σxσ−1+C1(σ+1)xσ+...)+C0xσ+C1xσ+1+C2xσ+2+...=0Let coefficients near xk(where k=σ−2,…,∞) beequal to zero. Then we have the next system:⎩⎨⎧2C0σ(σ−1)=02C1σ(σ+1)=0C0σ(σ−1)+(σ+2)(σ+1)C2−C0σ+C0=0........Ck(σ+k−1)2+2Ck+2(σ+k+2)(σ+k+1)=0Let σ=0 then:Ck=2k/2k!(−1)k/2C0, if k isdivisible by2,and Ck=2(k−1)/2k!(−1)(k−1)/2C1 otherwise .y=k=0, k=k+2∑2k/2k!(−1)k/2C0xk+k=1, k=k+2∑2(k−1)/2k!(−1)(k−1)/2C1xky(0)=7=>C0=7y′(0)=9=>C1=9y=7k=0, k=k+2∑2k/2k!(−1)k/2xk+9k=1, k=k+2∑2(k−1)/2k!(−1)(k−1)/2xk
Comments