Question #130284
solve the initial value problem using power series
(x^2 +2)y"-xy'+y=0
Y(0)=7 ,y'(0)=9
1
Expert's answer
2020-08-26T16:46:05-0400

(x2+2)yxy+y=0y=C0xσ+C1xσ+1+C2xσ+2+...(x2+2)(C0σ(σ1)xσ2+C1(σ+1)σxσ1+...)x(C0σxσ1+C1(σ+1)xσ+...)+C0xσ+C1xσ+1+C2xσ+2+...=0Let coefficients near xk(where k=σ2,,) beequal to zero. Then we have the next system:{2C0σ(σ1)=02C1σ(σ+1)=0C0σ(σ1)+(σ+2)(σ+1)C2C0σ+C0=0........Ck(σ+k1)2+2Ck+2(σ+k+2)(σ+k+1)=0Let σ=0 then:Ck=(1)k/2C02k/2k!, if k isdivisible by2,and Ck=(1)(k1)/2C12(k1)/2k!  otherwise .y=k=0, k=k+2(1)k/2C02k/2k!xk+k=1, k=k+2(1)(k1)/2C12(k1)/2k!xky(0)=7=>C0=7y(0)=9=>C1=9y=7k=0, k=k+2(1)k/22k/2k!xk+9k=1, k=k+2(1)(k1)/22(k1)/2k!xk(x^2+2)y''-xy'+y=0\newline y=C_0x^\sigma+C_1x^{\sigma+1}+C_2x^{\sigma+2}+...\\ (x^2+2)*(C_0\sigma(\sigma-1)x^{\sigma-2}+C_1(\sigma+1)\sigma x^{\sigma-1}+...)-x*(C_0\sigma x^{\sigma-1}+C_1(\sigma+1)x^{\sigma}+...)+C_0x^\sigma+C_1x^{\sigma+1}+C_2x^{\sigma+2}+...=0\\ Let\space coefficients \space near \space x^k(where \space k=\sigma-2, \ldots,\infin)\space be\, equal \space to \space zero. \space \\Then \space we \space have \space the \space next\space system:\\ \begin{cases} 2C_0\sigma(\sigma-1)=0\\ 2C_1\sigma(\sigma+1)=0\\ C_0\sigma(\sigma-1)+(\sigma+2)(\sigma+1)C_2-C_0\sigma+C_0=0\\ ........\\ C_k(\sigma+k-1)^2+2C_{k+2}(\sigma+k+2)(\sigma+k+1)=0 \end{cases}\\ Let\space\sigma=0\space then:\\ C_k=\dfrac{(-1)^{k/2}C_0}{2^{k/2}k!}, \space if \space k \space is\,divisible \space by\, 2, and\space C_k=\dfrac{(-1)^{(k-1)/2}C_1}{2^{(k-1)/2}k!}\space \space otherwise\space .\\ y=\underset{k=0,\space k=k+2}{\sum}\dfrac{(-1)^{k/2}C_0}{2^{k/2}k!}x^k +\underset{k=1,\space k=k+2}{\sum}\dfrac{(-1)^{(k-1)/2}C_1}{2^{(k-1)/2}k!}x^k\newline y(0)=7=>C_0=7\\ y'(0)=9=>C_1=9\\ y=7\underset{k=0,\space k=k+2}{\sum}\dfrac{(-1)^{k/2}}{2^{k/2}k!}x^k +9\underset{k=1,\space k=k+2}{\sum}\dfrac{(-1)^{(k-1)/2}}{2^{(k-1)/2}k!}x^k\newline


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS