Question #130229
X^2 ydx + (y +x^3)dy=0 Find the general solution of differential equations.
1
Expert's answer
2020-08-23T17:19:16-0400
SolutionSolution

x2ydx+(y+x3)dy=0    x2ydx=(y+x3)dydxdy=yx3x2ydxdy=1x2xy    dxdy+xy=1x2dxdy+Rx=SR=1y, S=1x2IF=ϵRdy=ϵ1ydy=ϵlog y=yxIF=SIF dy+Cxy=1x2y dy+C=yx2 dy+C=y22x2+Cxy=y22x2+C>Answerx^2 ydx + (y +x^3)dy=0 \implies x^2ydx=-(y +x^3)dy\\ \frac{dx}{dy}=\frac{-y-x^3}{x^2y}\\ \frac{dx}{dy}=-\frac{1}{x^2}-\frac{x}{y}\implies \frac{dx}{dy}+ \frac{x}{y}= -\frac{1}{x^2}\\ \frac{dx}{dy}+ Rx= S\\ R=\frac{1}{y},\ S=-\frac{1}{x^2}\\ IF=\epsilon^{\int Rdy}=\epsilon^{\int \frac{1}{y}dy}=\epsilon^{log\ y}=y\\ x \cdot IF = \int S \cdot IF\ dy+C\\ x \cdot y = \int -\frac{1}{x^2} \cdot y\ dy+C= \int -\frac{y}{x^2}\ dy+C= -\frac{y^2}{2x^2}+C\\ \therefore xy=-\frac{y^2}{2x^2}+C-------->Answer




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS