Question #130374
Solve bernoulli equation

3(1+x^2)dy/dx=2xy(y^3-1)
1
Expert's answer
2020-08-24T19:00:40-0400

Given 3(1+x2)dydx=2xy(y31)3(1+x^2) \frac{dy}{dx}=2xy(y^3-1) .

    dyy(y31)=2xdx3(1+x2)\implies \frac{dy}{y(y^3-1)} = \frac{2xdx}{3(1+x^2)}

Now by integration on both sides, we get

1y(y31)dy=2x3(1+x2)dx\int \frac{1}{y(y^3-1)} dy = \int \frac{2x}{3(1+x^2)} dx

    ln(y31)3ln(y)=ln(x2+1)3+13ln(c)\implies \dfrac{\ln\left(\left|y^3-1\right|\right)}{3}-\ln\left(\left|y\right|\right) = \dfrac{\ln\left(x^2+1\right)}{3}+ \frac{1}{3}\ln(c)

    y31y3=c(x2+1)\implies \frac{y^3-1}{y^3 } = c (x^2+1)

    1y3=1c(x2+1)\implies \frac{1}{y^3 } =1- c (x^2+1)

    y=1(1c(x2+1))13\implies y =\frac{1}{(1- c (x^2+1))^{\frac{1}{3}}} is the solution.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS