Given 3(1+x2)dydx=2xy(y3−1)3(1+x^2) \frac{dy}{dx}=2xy(y^3-1)3(1+x2)dxdy=2xy(y3−1) .
⟹ dyy(y3−1)=2xdx3(1+x2)\implies \frac{dy}{y(y^3-1)} = \frac{2xdx}{3(1+x^2)}⟹y(y3−1)dy=3(1+x2)2xdx
Now by integration on both sides, we get
∫1y(y3−1)dy=∫2x3(1+x2)dx\int \frac{1}{y(y^3-1)} dy = \int \frac{2x}{3(1+x^2)} dx∫y(y3−1)1dy=∫3(1+x2)2xdx
⟹ ln(∣y3−1∣)3−ln(∣y∣)=ln(x2+1)3+13ln(c)\implies \dfrac{\ln\left(\left|y^3-1\right|\right)}{3}-\ln\left(\left|y\right|\right) = \dfrac{\ln\left(x^2+1\right)}{3}+ \frac{1}{3}\ln(c)⟹3ln(∣∣y3−1∣∣)−ln(∣y∣)=3ln(x2+1)+31ln(c)
⟹ y3−1y3=c(x2+1)\implies \frac{y^3-1}{y^3 } = c (x^2+1)⟹y3y3−1=c(x2+1)
⟹ 1y3=1−c(x2+1)\implies \frac{1}{y^3 } =1- c (x^2+1)⟹y31=1−c(x2+1)
⟹ y=1(1−c(x2+1))13\implies y =\frac{1}{(1- c (x^2+1))^{\frac{1}{3}}}⟹y=(1−c(x2+1))311 is the solution.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments