Question #122433
d^2y/dx^2 + 3(dy/dx) + 2y = sin(e^x )
1
Expert's answer
2020-06-16T15:53:37-0400

k2+3k+2=0k^2+3k+2=0

k1=2k_1=-2

k2=1k_2=-1

y(x)=C1ek1x+C2ek2xy(x)=C_1e^{k_1x}+C_2e^{k_2x}

y(x)=C1e2x+C2exy(x)=C_1e^{-2x}+C_2e^{-x}


exddxC2(x)+e2xddxC1(x)=0e^{-x}\frac {d}{dx}C_2(x)+e^{-2x}\frac {d}{dx}C_1(x)=0

ddx(ex)ddxC2(x)+ddx(e2x)ddxC1(x)=sin(ex)\frac {d}{dx}(e^{-x})\frac {d}{dx}C_2(x)+\frac {d}{dx}(e^{-2x})\frac {d}{dx}C_1(x)=sin(e^x)


exddxC2(x)+e2xddxC1(x)=0e^{-x}\frac {d}{dx}C_2(x)+e^{-2x}\frac {d}{dx}C_1(x)=0

exddxC2(x)2e2xddxC1(x)=sin(ex)-e^{-x}\frac {d}{dx}C_2(x)-2e^{-2x}\frac {d}{dx}C_1(x)=sin(e^x)


ddxC1(x)=e2xsin(ex)\frac {d}{dx}C_1(x)=-e^{2x}sin(e^x)

ddxC2(x)=exsin(ex)\frac {d}{dx}C_2(x)=e^{x}sin(e^x)


C1(x)=e2xsin(ex)dx=excos(ex)sin(ex)+C3C_1(x)=-\int e^{2x}sin(e^x)dx=e^xcos(e^x)-sin(e^x)+C_3

C2(x)=exsin(ex)dx=C4cos(ex)C_2(x)=\int e^{x}sin(e^x)dx=C_4-cos(e^x)


Answer:

y(x)=C3e2x+C4exe2xsin(ex)y(x)=C_3e^{-2x}+C_4e^{-x}-e^{-2x}sin(e^x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS